

Nanomaterials for conservation of European architectural heritage developed by research on characteristic lithotypes

NANO-CATHEDRAL PROJECT

Cathedrals, distributed throughout Europe, are representative of the diversity of European cultural heritage. Five different cathedrals were selected as they may be considered as representative of both different exposure conditions and different types of stones.

In particular, the Cathedral of Pisa, in central Italy, and the Cathedral de Santa María of Vitoria-Gasteiz in Spain were selected as representative of south European "Mediterranean" climate in coastal and continental regions, respectively; the Sint-Baafs Cathedral of Ghent, in Belgium, the Cathedral of St. Peter and Mary in Cologne, Germany and the St. Stephen's Cathedral, in Wien, Austria, were selected as representative of North European climate in coastal and continental regions, respectively.

Moreover, the Oslo Opera House, was considered as an example of a contemporary building coated with white Carrara marble.

They also represent different lithotypes such as marble, sandstone, limestone.

The objective is providing "key tools" for restoration and conservation:

- On representative lithotypes
- On European representative climatic areas
- With a time-scale/environmental approach
- With technology validated in relevant environment (industrial plant and monuments)
- Exploiting results also on modern stone made buildings

WHAT ARE THE INNOVATIONS?

The results of the project will provide both innovation in technology and rationalization of the conservation policy affording a renewed knowledge of the complex system "treatment/stone substrate", and of the durability threshold of these treatments.

Innovative materials, such as nano-particle based consolidants and proper polymer nanocomposites based coatings will be developed, in agreement with the NMP-21 call requirements. In particular, the employment of nano-particle with different composition will allow to provide methods for consolidations, protection and pollutants decomposition, thus preventing part of the degradation and providing long-term conservation.

An environmental impact assessment of the new materials will be included, to ensure development of sustainable and compatible materials and methods.

APPROACH

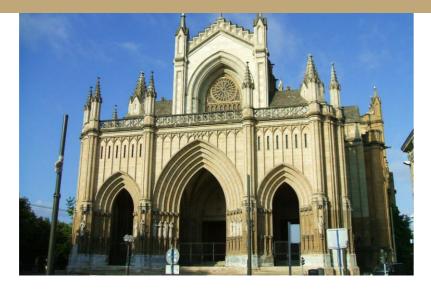
The multidisciplinary approach is granted by the presence of expertise covering the field of geology and materials science, institutions for management and preservations of the cathedrals, restoration companies and also nano-particles and coating producers.

The multidisciplinary approach and the inclusion of industrial partners directly involved in the production processes and technology of restoration will allow the development of affordable methodologies, granting reliability of the developed chain.

THIS KIND OF SYNERGY IS NANO-CATHEDRAL'S KEY FOR INNOVATION.

THE SELECTED MONUMENTS

PISA


BUILDING PERIOD Medieval Age

ARCHITECTURAL STYLE

Pisan Romanesque

MAIN LITHOTYPES CLASSES Mount Pisano marble /black limestones /Apuan marble

/Proconnesian marble /calcarenite /granitoid rocks /serpentinite

VITORIA

BUILDING PERIOD Medieval Age

ARCHITECTURAL STYLE 13th - 16th Centuries

MAIN LITHOTYPES CLASSES

Gothic

Lumachella from Ajarte /sandstone from Elguea /calcarenite from Olarizu

AUTHORS

A. Lazzeri1, M.B. Coltelli1, M. Lezzerini1, V. Castelvetro1, L. Toniolo1, F. Gherardi1, O. Chiantore1, L. Festa 2, I. Vicini3,

V.Mucci3, J. Weber4, A. Rohatsch 5, R. Fischer 6, R. Drewello 7.

(1) National Inter University Consortium of Materials Science and Technology (INSTM), Italy

(2) Istituto Superiore per la Conservazione ed il Restauro (ISCR), Italy

(3) Warrant Group S.r.l., Italy

(4) Institute of Arts and Technology/Conservation Sciences, University of Applied Arts Wien, Austria

(5) Forschungsbereich für Ingenieurgeologie, Institut für Geotechnik, Technische Universität Wien, Austria

(6) Karlsruhe Institute of Technology, Institute for Applied Biosciences, Department of Microbiology, Germany

(7) Otto-Friedrich-University, Bamberg, Germany

WIEN

BUILDING PERIOD Medieval Age (1140-1513)

ARCHITECTURAL STYLE

Late Romanesque and Gothic

MAIN LITHOTYPES CLASSES

Limestones from Leithamountains and Vienna, few siliceous sandstones from Lower Austria

KOLN

BUILDING PERIOD

Medieval Age (1248–ca. 1520) 19th Century (1842 - 1880)

ARCHITECTURAL STYLE

Gothic Neogothic

MAIN LITHOTYPES CLASSES

Drachenfels Trachyte / Schlaitdorf Sandstone / Obernkirchen Sandstone / Savonnieres Limestone / Volcanic Tuffstones / Basalt lava

GHENT

BUILDING PERIOD

Medieval Age (942-1038)14th-16th Centuries (1300-ca. - 1569)

ARCHITECTURAL STYLE

Romanesque **Brabantine Gothic**

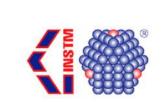
MAIN LITHOTYPES CLASSES

Arenaceous limestone belonging to the Lede Formation (Belgium), and Belgian and French limestones as replacement materials (from Gobertange, Euville, Savonnières and Massangis)

OSLO

BUILDING PERIOD 2003-2007

ARCHITECTURAL STYLE Contemporary


MAIN LITHOTYPES CLASSES

White Carrara marble

HORIZON 2020

The project leading to this application has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 646178

