
1

The Definitive PDF/A Conformance Checker

PREFORMA Phase 1

Final Report of the veraPDF Consortium

2

Introduction
Referring to the original veraPDF Tender Proposal section 1.1, Proposed Solution, the mission of the
veraPDF Consortium is to develop “the definitive, industry-approved, open-source implementation checker
for validating PDF/A-1, PDF/A-2, and PDF/A-3.”

This document is the final report of the veraPDF Consortium on Phase 1 of PREFORMA. It includes all
deliverables: plans for Community Engagement, Functional and Technical Specifications for the PDF/A
Conformance Checker, and supporting documents.

3

Table of Contents

Section Evaluation criteria Page

 Glossary of Terms 4

I Community Engagement I(1,3) 8

II Functional Specification I(1,2); I(2,3/4/5/6/7) 23

III Technical Specification and Software
Architecture

I(2,1); I(2,2) 61

Annexes

A Communications Plan 138

B Technical Milestones (Phase 2-3) I(3,1) 143

C PDF/A Test Corpora Analysis 148

D PDFBox Feasibility Study 150

E License Compatibility Report I(1,9) 175

F Software and Demonstrator 191

G ICC Profiles Checks 192

H Embedded Fonts Checks 196

4

Glossary of Terms
Term Definition

Assertion Generally an Assertion is a boolean expression, i.e. it may be evaluated to
true or false, used in software testing. Evaluating the Assertion involves
examining some property of the item under test.

Byte Sequence A binary data stream read from a source, for example:
● an input stream from a file on storage device accessed through a

file system;
● an input stream read from a particular URL; or
● an input stream read directly from memory.

A particular byte sequence is identified by combining its length in bytes
and the SHA-1 Hash (derived from its contents).

Conformance
Checker

A PREFORMA term that defines a generalised open source toolset, i.e.
not concerned with a particular file format, that:

● validates whether a file has been produced according to the
specifications of a standard file format;

● validates whether a file matches the acceptance criteria for long-
term preservation by the memory institution;

● reports in human and machine readable format which properties
deviate from the standard specification and acceptance criteria;

● performs automated fixes for simple deviations in the metadata of
the preservation file.

Embedded
Resource

A Byte Sequence embedded into the PDF Document such as an image,
font, colour profile, or attachment.

Embedded
Resource Parser

A third-party tool which can parse and analyse Embedded Resources, for
example a JPEG2000 validator or font validator.

Embedded
Resource Report

A Machine-readable Report produced by an Embedded Resource Parser
containing information about an Embedded Resource.

Human-readable
Report

A report generated from a Machine-readable Report in a format suitable
for human interpretation (eg. HTML or PDF) and containing messages
translated according to a Language Pack.

Implementation
Check

The execution of a discrete Validation Test for a particular PDF Document.
The Implementation Checker carries out these tests when validating a
PDF Document against an ISO standard.

Implementation
Checker

A PREFORMA term for the component which “performs a comprehensive
check of the standard specifications listed in the standard document.” See
PDF/A Validation.

ISO Working
Group (WG)

An ISO committee for one or more ISO standards. In ISO TC 171 SC 2,
WG 5 owns ISO 19005 and WG 8 owns ISO 32000.

5

Term Definition

Language Pack A file or set of files which specify all string constants for a given language
as well as additional localisation (such as date format)

Machine-readable
Report

A structured report, independent of language and localization, generated
for automated processing rather than human readability.

Metadata Fix A simple fix of the PDF Metadata embedded in the PDF Document.

Metadata Fixer A PREFORMA term for the component “which allows for simple fixes of
the metadata embedded in the file, making them compliant with the
standard specification”

Metadata Fixing
Report

A Machine-readable Report generated by the Metadata Fixer containing
details of Metadata Fixes carried out and any exceptions.

PDF Document A Byte Sequence claiming conformance with ISO 32000-1:2008 (for
PDF/A-2 and PDF/A-3) or to the Adobe specification of PDF 1.4 (for
PDF/A-1).

PDF Document
Extract

A programmatic model of a PDF Document created by parsing a PDF. The
model encapsulates applicable PDF syntax, any PDF Metadata, plus
details of PDF Features. The model can be serialised as a Machine-
readable Report.

PDF Feature Any property of the PDF Document or any of its structural elements such
as pages, images, fonts, color spaces, annotations, attachments, etc.

PDF Features
Report

A Machine-readable Report containing details about PDF Features
including PDF Metadata and other available XMP metadata packages.

PDF Metadata PDF document-level metadata stream containing the XMP package and
the entries of the PDF Info dictionary.

PDF Parser A software component that reads a PDF Document and constructs a PDF
Document Extract.

PDF Validation
TWG (TWG)

The Technical Working Group coordinated by the PDF Association and
attended by industry members to discuss and decide matters pertaining to
PDF Validation.

PDF/A Document A Byte Sequence claiming conformance to a specific PDF/A Flavour.

PDF/A Flavor PDF/A Part+Level.
Possible PDF/A Flavors are: 1a, 1b, 2a, 2b, 2u, 3a, 3b, 3u.

PDF/A
Identification

The part of the XMP metadata in a PDF Document that identifies the
PDF/A Part (1, 2 or 3) and conformance Level (b, a, or u) to which the
PDF Document claims to conform.

PDF/A Level Level a, b, or u conformance as defined by the PDF/A Part.

PDF/A Part Part 1: ISO 19005-1:2005
Part 2: ISO 19005-2:2011
Part 3: ISO 19005-3:2012

PDF/A Validation The process of testing whether the PDF Features of a PDF Document
conform to the requirements for a particular PDF/A Flavor. The PDF/A
Validation process generates a Validation Report.

6

Term Definition

PDF/A Validation
Report

A Machine-readable Report containing the results (all errors and
notifications) of PDF/A Validation.

Policy Institutional acceptance criteria for long-term archiving and preservation of
PDF Documents and their PDF Metadata, including requirements beyond
those specified in the PDF/A standards.

Policy Check The execution of a discrete Policy Test for a particular PDF Document.
The Policy Checker carries out Policy Tests when enforcing a particular
Policy Profile.

Policy Checker A PREFORMA term for the component “which allows for adding
acceptance criteria, always compliant with the standard specifications, that
further differentiates the properties of the file. This might, for example,
include limiting conformance to PDF/A-1b, or exclude files containing a
certain type of image.”

Policy Profile A file that expresses institutional Policy as a set of formal Policy Tests.

Policy Profile
Registry

Enables the discovery and exchange of Policy Profiles between
institutions.

Policy Report A Machine-readable Report containing the results of Policy Checks
performed as defined in a Policy Profile.

Policy Test A Test Assertion that is evaluated by examining a PDF Features Report to
ensure a PDF Document complies with institutional Policy.

PREFORMA Shell A PREFORMA term for an interactive component: “the conformance
checker should interface with other systems through a ‘shell’ which allows
for interfacing multiple conformance checkers at the same time. This might
in the future allow integrating the conformance checkers of different
suppliers into one application.”

Report Template A template file that defines the layout and format of a Human-readable or
Machine-readable report. These are used by the Reporter to transform
Machine-readable Reports into alternative formats.

Reporter A PREFORMA term for the component that “interprets the output of the
implementation checker and policy checker and allows for defining multiple
human and machine readable output formats. This might include a well-
documented JSON or XML file, a human readable report on which
specifications are not fulfilled, or a fool-proof report which also indicates
what should be done to fix the errors.”

SHA-1 Hash A cryptographic hash function that creates a digital fingerprint for a byte
sequence, referred to as ‘message’ in cryptographic documentation. A
SHA-1 Hash value is 20 bytes, or 40 hexadecimal digits, long.

Test Assertion A Test Assertion is a testable or measurable expression for evaluating the
adherence of an implementation (or part of it) to a normative statement in
a specification.

Validation Model A formal definition of all PDF Document objects, their properties, and
relationships between them expressed in a custom syntax.

7

Term Definition

Validation Profile A structured file describing the set of Validation Tests to be performed
during PDF/A Validation for a particular PDF Flavour.

Validation Test A Test Assertion that is evaluated by examining a PDF Features Report to
ensure a PDF Document complies with a requirement expressed in a
specific PDF/A Flavour.

veraPDF API The veraPDF application programming interface defines the operations,
inputs, outputs, and types that form the protocols for interacting
programmatically with the veraPDF Library.

veraPDF
Command Line
Interface

The command line executable(s) providing access to the veraPDF Library
API and functionality via a command line interface.

veraPDF
Configuration

The detailed settings which configure an invocation of the veraPDF
Conformance Checker. Configuration settings are logically divided into:

● task config: settings controlling the behaviour of a component,
these are reusable across executions and installations;

● installation config: settings unique to a particular installation,
such as home and temp directories;

● execution config: settings unique to a particular invocation, such
as files or URLs to check, names of output report files.

veraPDF
Framework

A software library that provides a lightweight framework based on open
standards for use by Conformance Checker developers.

veraPDF Desktop
Graphical User
Interface (GUI-D)

An executable program that provides access to the veraPDF API and
Library on a desktop computer or workstation.

veraPDF Library The software library that provides the functionality and APIs for PDF/A
Validation, Policy Checking, Metadata Fixing, and Reporting.

veraPDF REST
API

RESTful web service API that provides HTTP access to the veraPDF
Library functionality. This is a REST layer on top of the veraPDF API.

veraPDF Shell Provides the user interfaces to manage and operate the Conformance
Checker, handling issues such as workflow control and scheduling.

veraPDF Web
Graphical User
Interface (GUI-W)

Browser based HTML user interface that calls the veraPDF Library
through the REST API, which in turn calls the veraPDF API.

8

Community Engagement
CE Introduction

CE 1 Stakeholders

CE 2 Community development activities

CE 2.1 veraPDF ecosystem

CE 2.2 Specific communities

CE 2.2.1 Industry and Standards

CE 2.2.2 Other domains / communities / standards

CE 2.2.3 Memory institutions

CE 3 Contribution guidelines

CE 3.1 Functional and Technical Specifications

CE 3.2 Corpora

CE 3.2.1 Validation Corpora

CE 3.2.2 Policy Checking Corpus

CE 3.2.3 Progress in Phase 1

CE 3.3 Code

CE 3.3.1 Code acceptance

CE 3.4 Messaging

CE 3.5 Documentation

9

CE Introduction
In addition to developing software the veraPDF Consortium will undertake other activities supporting the
terms of the PREFORMA tender, specifically:

● interact with industry experts and standards organisations for guidance and clarification in
interpreting the relevant specifications;

● develop an open licensed corpus of test files that instantiates a reference interpretation of the
PDF/A standards (see the PDF/A Test Corpus Report for an analysis of the coverage of existing
corpora against the standard specifications);

● establish and foster an open source project and community of users and developers who will be the
custodians of the software once the funded period is completed.

CE 1 Stakeholders
Refining the analysis in the veraPDF Tender Proposal section 1.1 I Stakeholders (p. 9), we identify key
communities, stakeholders within those communities, their interest in the project, and the relationship with
veraPDF Consortium members with respect to PREFORMA.

Table 1 describes the various community interests in the project and the aims of the veraPDF consortium
which relate to each of those interests, and identifies the stakeholders and their stake in the project
interests and aims.

10

Mechanisms for engaging veraPDF
stakeholders are described in Annex A.

Memory
Institutions

Industry 3rd party
communities

Research
Organisations

Commercial
Customers

Developers Users PDF
vendors

Other
software
vendors

ISO [tbd] Researchers Users

Awareness Project visibility x x x x x x x x

Updates on progress x x x x x x

Recruitment Identify collaborators x x x x x x

Contribution Functional requirements x x x x x

Technical requirements x x x

Corpora x x x x x

Code x x x

Documentation x x x

Third-party extensions x x

11

Mechanisms for engaging veraPDF
stakeholders are described in Annex A.

Memory
Institutions

Industry 3rd party
communities

Research
Organisations

Commercial
Customers

Developers Users PDF
vendors

Other
software
vendors

ISO [tbd] Researchers Users

Evaluation Functional review x x x x x

Technical review x x x x

Software testing x x x x x

Adoption Implementation x x x x x

Support x x x

Sustainability x x x

Table 1: domains, stakeholders, interests and community objectives

12

CE 2 Community development activities

CE 2.1 veraPDF ecosystem

PREFORMA Evaluation Criteria

D8.1. (i) healthy ecosystem: the project establish a healthy ecosystem around an open source
’reference’ implementation for specific file formats;

Referring to the original veraPDF Tender Proposal, section 1.1 I A sustainable ecosystem to ensure long-
term sustainability (pp. 8-10) this section describes the mechanisms of community interaction in more
detail, highlighting how the proposed structures deliver on the objectives of the PREFORMA challenge.
Specifically, we demonstrate how the complementary remits of the veraPDF consortium partners contribute
to a healthy and long-lived ecosystem.

The Communications Plan, which describes the audiences and channels which will be addressed in more
detail, can be found in Annex A: Communications Plan.

CE 2.2 Specific communities

In order to accomplish the objectives of the PREFORMA challenge, veraPDF engages and collaborates
with a broad community of stakeholders.

CE 2.2.1 Industry and Standards

PREFORMA Evaluation Criteria

D8.1 (vii) propose changes and additions: technology providers draft proposals for changes and
additions to the standard specifications;

D8.1 (viii) participate in work-groups: technology providers participate in technical workgroups that
maintain a standard specification;

A key feature of the veraPDF value proposition lies in the claim of being definitive. We addressed the
significance of definitive validation in the original veraPDF Tender Proposal, section 1.1 I Methodology (pp.
7-8). The definitive PDF/A validator is not only a faithful implementation of the standard, it is also the formal
test corpora and associated software that possesses the quality of being generally accepted by the
community for determining whether or not a PDF Document conforms to ISO 19005 requirements.

CE 2.2.1.1 Adoption factors

The PDF/A Competence Center published the Isartor Test Suite in 2008 which was used to support
development of shipping products, with leading vendors such as Adobe Systems, callas software, intarsys,
PDF Tools, LuraTech and SEAL Systems using it immediately for quality assurance.

As described in the original veraPDF Tender Proposal, section 1.1 I Methodology (pp. 7-8) the veraPDF
Consortium leverages the PDF industry developer ecosystem as embodied in the PDF Association and its
history of fostering understanding, adoption, and best-practices pertaining to PDF/A via the Isartor Test
Suite and Technical Notes, its Technical Working Groups (TWG), and its formal ‘Category A’ liaison
relationships to relevant ISO Working Groups (WGs).

In the context of veraPDF several factors will combine to drive rapid and general adoption of the veraPDF
corpora and software across the various domains within the marketplace.

13

Key among these is the establishment by the PDF Association of the new PDF Validation Technical
Working Group (TWG) which was created as part of the activities in Phase 1.

Given the scope of veraPDF - the corpora, software features, interpretation of the specifications, involved
parties, purpose-built extensible design, development process, and promotional factors - we expect at least
an equivalent rate of adoption, and certainly a broader reach, compared with the Isartor Test Suite.

CE 2.2.1.2 PDF Validation Technical Working Group (TWG)

To address PREFORMA Phase 1, the Board of the PDF Association elected to form a new TWG oriented
towards the question of validation of PDF in general, including PDF/A in the context of veraPDF.

The role of the PDF Validation TWG is to:

● assemble interested parties to discuss strategy, policy and questions of interpretation;
● provide an international forum for establishing industry consensus on veraPDF test files, software

messaging and message translation (localization or internationalization);
● provide a formal vehicle for recording decisions and driving veraPDF findings to developers;
● coordinate with the PDF and PDF/A TWGs and 3rd party organisations;
● request clarifications and propose changes directly to the responsible ISO WG.

As the formal venue within the PDF Association for validator scope and design, policy for interpretation of
the PDF/A specifications and their instantiation as Validation Profiles, test file approval, and acceptance
testing the PDF Validation TWG performs five unique roles which have the effect separately and together of
promoting rapid acceptance and adoption of veraPDF industry-wide.

The TWG drives the degree to which veraPDF is regarded as definitive in several ways.

Feature Relevant factor Contribution to “definitive”

ISO WG
relationship

The PDF Association is the
category A liaison to the WGs
in ISO TC 172 SC 2. Most
members of the ISO 19005
WG are also represented in
the TWG.

Substantial. The PDF Association has an
established formal means of
communication with the ISO WGs. Issues
raised in the TWG may be brought directly
to the attention of the relevant ISO WG.

Industry
awareness

The TWG ensures that the
industry technical community
is aware of the validator.

Substantial. Awareness is vital to ensuring
the broadest impact, fastest adoption rates
and most consistent implementation.

Technical
clarity and
implementation
diversity

TWG meetings, discussions,
profiles, test files and results
are available to all PDF
Association members,
ensuring broad consideration
across a diverse set of
implementers.

Substantial. The TWG provides a forum
for questions and the means of reviewing,
adjudicating, recording and publishing
complex or substantive decisions
regarding architecture, software
functionality, Validation Profiles, test files,
localization and more.

14

Feature Relevant factor Contribution to “definitive”

Industry
leadership

TWG involvement by Adobe
Systems, callas software,
PDF Tools, and other ISO
WG and PDF/A
implementation leaders.

Vital. These companies are the industry
leaders in creating and processing PDF/A
files, including founding members of the
PDF/A Competence Center.

Transparency A clear development and test
file selection process
accepted by TWG members
on a consensus basis.

Vital. True industry acceptance requires
that contentious cases are resolved
openly and by general acclamation
including, if necessary, ISO WG review.

Focus veraPDF is a purpose-built
validator, not a PDF parser
with validation features.

Modest. However, this approach allows
the majority of effort to go towards the
design objective rather than enablement.

Table 2: veraPDF features driven by the PDF Validation TWG

CE 2.2.1.3 Progress in Phase 1

48 PDF Association members, including a majority of the regular members of ISO TC 171 SC 2 WG 5
(PDF/A) joined the PDF Validation TWG mailing list to participate in Phase 1. Developers in many time
zones who do not attend the meetings (they are regularly scheduled at 1700 CET) watch recordings of the
meetings, which include any slides or other documents presented, and audio of the discussion.

The developer of the PDF/A validator licensed by Adobe Systems for use in PDF/A conversion and
validation in Adobe Acrobat is a vocal member of the TWG, as is Adobe Systems’ “PDF Architect” (the
company’s lead developer on standards conformance matters and the ISO 19005 Project Leader).

The PDF Validation TWG operates with the objective of finding consensus. To help facilitate consensus-
based outcomes, the TWG established in December 2014 a Validation Advisory Board (VAB) made up of
expert developers. If the VAB fails to resolve a dispute the TWG may refer items to the PDF Association
Board or the respective ISO WG for resolution.

The PDF Validation TWG convenor and responsible PDF Association staff member for coordinating the
industry response to the PREFORMA challenge is a regular member since 2007 of the ISO 19005
committee, and has served as ISO Project Leader for ISO 32000 since 2010.

PDF Validation TWG meeting agendas to-date have included:

● TWG structure and process, introduction of TWG Chair and Validation Advisory Board;
● Overview of the Functional Specification draft and test methods;
● Top level architecture;
● Validation profile and test suites;
● The scope of PDF/A validation with respect to external specifications;
● Presentation of the veraPDF validation profile model;
● Validation of embedded formats:

○ The updated list of all embedded formats relevant for PDF/A validation;
○ Validation of embedded ICC profiles;
○ Validation of embedded fonts;

● Comparison with DVA and Levigo PDF formal presentation format;

15

● The validation algorithm;
● Using Xtext for the formal syntax;
● Validating "number" in PDF/A-1 inconsistencies in the requirements for TrueType built-in encoding;
● Strategy for validating PDF/A Level A (Tagged PDF):

○ distinguishing between machine- and human-verifiable conditions;
○ parts of PDF 1.4 / ISO 32000-1:2008 specifications that shall be validated.

CE 2.2.2 Other domains / communities / standards

As discussed in the original veraPDF Tender Proposal, section 1.1 II Potential of the Proposed Idea /
Solution / Technology to Address Future and/or Wider Challenges in the Area (pp. 10-14), a purpose-built
open source validator for a format with the visibility and importance of PDF provides substantial potential
and opportunity for community members and others to leverage the work of the veraPDF Consortium and
apply it to related technologies. A key enabler of this potential is the inherent extensibility of the software
architecture. As designed (see FS 3 Conformance Checker extensions) the veraPDF Conformance
Checker will provide an attractive framework for other validators as it facilitates their use in the PDF
context, a vast arena.

The veraPDF Validation Model (see TS 2 Validation Model) does not preclude 3rd party engines for 3rd
party purposes. In addition, the model is not linked to any platform or specific development technology. A
font developer, for example, might build their own font program validator using the veraPDF architecture to
better understand the encoding of subsets in PDF Documents. In our view, this fact increases prospects
that the veraPDF model is sufficiently generic to itself become a de facto standard for “definitive” validation
of Byte Streams in a multi-vendor environment.

Such an architecture may even be ultimately necessary to the project of a definitive validator. Beyond PDF
1.4 and ISO 32000, PDF/A specifies requirements in 3rd party standards. Our maximally generic approach
is intended to facilitate outreach, communication, and cooperation with the respective stakeholders in these
technologies.

CE 2.2.2.1 Specific extensions

Conformance with PDF/A requires conformance with applicable components of various 3rd party
specifications (see FS 1 PDF/A Validation in context). veraPDF will reach out to stakeholders in these 3rd
party communities to encourage participation in the veraPDF community and encourage the consideration
of the veraPDF generic, purpose-built validator to inspire their own validator development efforts, ideally
aligning them directly with veraPDF.

External specification Owner / community Planned activity

Colour profiles International Colour
Consortium (ICC)

Personal contact via PDF Association
members.

TrueType Adobe Systems, font
developers

Personal contact via PDF Association
members.

ISO/IEC 14496
(OpenType)

Microsoft, font developers Personal contact via Microsoft
contacts.

16

External specification Owner / community Planned activity

ISO/IEC 14496 (Open
Font Format)

Various, including
Microsoft

Personal contact via PDF Association
members.

ISO/IEC JTC 1/SC 29
(JPEG 2000)

The JP2 imaging
community

Personal contact via PDF Association
members.

Jpylyzer (hosted by OPF) Personal contact via OPF.

ISO 16684 (XMP) XMP metadata community Personal contact via PDF Association
members.

Table 3: 3rd party communities and planned activities

CE 2.2.2.2 Impact on extensibility

The veraPDF approach enables a wide variety of supporting and parallel collaborations.

Feature Relevant factor Contribution to “extensible”

Flexible
software
architecture

An open, generic design facilitates
a wide variety of implementation
scenarios.

Substantial. Provides a framework for
greenfields development of any given
component, increasing flexibility and
lowering technical barriers to entry.

PDF parser
agnostic

Although the proposed reference
implementation of veraPDF will
leverage a specific low-level parser
the architecture will be library-
agnostic. (see FS 3.1.1.1 PDF
Parsers).

Substantial. Allows implementers to
integrate veraPDF with their preferred
creation or processing libraries .This
strategy future-proofs the software,
encouraging continued development in
diverse implementations.

Generic
plugin
architecture

The veraPDF model encourages
plug-ins for parsing not only
PDF/A-related third-party data
structures (see FS 1.2.1 PDF/A
requirements beyond PDF syntax),
but also for other features in ISO
32000, other ISO standards for
PDF such as PDF/E or PRC,
images, and for embedded content
such as rich media or attachments
(see FS 3.1.1.2 Embedded
Resource Parsers).

Although limited under PREFORMA
funding to addressing PDF/A, veraPDF
will encourage development of other
components to validate objects that may
appear in PDF/A Documents but are out
of scope for PREFORMA.

The plugin model facilitates broad-based
efforts to develop and promote file
format validators. For example, Jpylyzer
may be adapted as a veraPDF plugin
analyzing JPEG 2000 images in PDF
Documents.

Table 4: veraPDF features pertaining to extensibility

http://jpylyzer.openpreservation.org/2014/09/11/Jpylyzer-finalist-dpa
http://jpylyzer.openpreservation.org/2014/09/11/Jpylyzer-finalist-dpa

17

CE 2.2.2.3 Progress in Phase 1

In Phase 1 work has been limited to identifying external dependencies and the community organisations
which control the relevant standards and specifications. Until Phase 2 is funded approaching these
communities would not result in meaningful collaboration, however this will be a priority for the start of
Phase 2 once we can announce that work on veraPDF is in progress.

CE 2.2.3 Memory institutions

PREFORMA Evaluation Criteria

D8.1 (ix) facilitate OAIS Monitor Designated Communities: the network of common interest
enables implementation of the OAIS Monitor Designated Communities function for Preservation
Planning, interacting with Archive Consumers and Producers to track changes in their service
requirements and available product technologies;

D8.1 (x) facilitate OAIS Develop Preservation Strategies and Standards: the network of common
interest enables implementation of the OAIS Develop Preservation Strategies and Standards
function for preservation planning, developing and recommending strategies and standards, and
for assessing risks, to enable the Archive to make informed trade-offs as it establishes standards,
sets policies, and manages its system infrastructure;

D8.1 (xi) facilitate OAIS Establishing Standards and Policies: the network of common interest
enables implementation of the OAIS Establishing Standards and Policies function by the
Administration of the Archive system and maintain them.

FS 2.5 veraPDF Shell describes how the veraPDF Conformance Checker software acts as a component
within an OAIS-archive, specifically enabling processes associated with Ingest. FS 2.3 veraPDF Policy
Checker describes the mechanism for creating and using Policy Profiles which in turn leads to the creation
of a Policy Profile Registry, described below. In addition, the veraPDF consortium and community further
enable additional functions of the OAIS-archive, also described below.

CE 2.2.3.1 Registry of Policy Profiles

The Conformance Checker functionally separates the application of a Policy Profile from other aspects of
the operation (such as technical environment and execution variables) which logically separates Policy
Profiles from other aspects of the local environment and makes it possible to reuse a Policy Profile created
by another institution. The mechanism and data formats for expressing Policy Profiles are described in the
Technical Specification (see TS 5 Policy profile).

In order to facilitate the sharing of Policy Profiles between institutions, veraPDF will create a Policy Profile
Registry. The Registry will provide a means of discovering, obtaining, and publishing Policy Profiles, to
include:

● a web interface for searching and browsing existing Policy Profiles based on the description of the
institutional policy provided by the author (for example by PDF/A Part or feature, or external format
such as image or font);

● downloadable Policy Profiles in the defined data format, created as a result of community
requirements gathering and representing common institutional policies;

● user guides (documentation) describing how to use and update Policy Profiles;
● a mechanism for uploading and sharing newly created Policy Profiles.

18

During Phase 2, memory institutions will be invited to contribute policy requirements and veraPDF will
provide support in expressing these in the formal language of Policy Profiles. We will encourage the
sharing of these exemplar Policy Profiles for testing and reuse by other institutions, both providing quality
assurance of the policies and allowing common policy requirements to be identified across the community.
In turn, this will impact other OAIS-archive functions as described below.

CE 2.2.3.2 Impact on OAIS-archive functions

The veraPDF model and approach to community development enable several OAIS functions pertaining to
non-technical aspects of an OAIS-archive.

OAIS function veraPDF feature Impact on memory institutions

Monitor Designated
Communities

Industry adoption Improves understanding of the market for
PDF software, including commonly used
creating and editing suites, providing detailed
information about available technologies for
Producers and Consumers.

Definitive validation Enables the definition of explicit service levels
for deposit and access taking into account
format validity.

Develop Preservation
Strategies and
Standards

Corpora which
comprehensively
instantiate the
requirements of
PDF/A

Enables the comprehensive analysis of
format functionalities on the basis of
authoritative information and test files which
can be used for testing and evaluating
preservation strategies, leading to an
understanding of risk in the content of
preservation planning.

Establish Standards
and Policies

PDF Validation TWG Enables communication of policy checking
requirements to the relevant ISO WG for
consideration (e.g. highlighting ambiguities in
the specifications).

Policy Profiles and
the Policy Profile
Registry

Enables sharing of best practice and lowers
barriers to implementing institutional policies
by sharing common requirements and test
files.

Table 5: features pertaining to OAIS functions

CE 2.2.3.3 Progress in Phase 1
The Open Preservation Foundation ran a webinar for members presenting the Functional and Technical
Specifications for review. Several institutions provided detailed feedback on both the mechanisms for
expressing and enforcing policy and on specific policy requirements of their institutions. These are given as
examples in FS 2.3 Policy Checker.

http://openpreservation.org/event/verapdf-webinar-members-only/

19

CE 3 Contribution guidelines
This section refers to and extends the open source practices as described in the original veraPDF Tender
Proposal, section 1.1 IV Cohesion with open source development values and objectives (pp. 15-18).
Specifically, it provides details about how the community will be managed, and how code, files, and
documentation can be contributed and the quality criteria that will be applied by the open source project
leader (OPF Technical Lead). Contribution guidelines will be published on the veraPDF website (and other
appropriate locations) to provide support for the community.

CE 3.1 Functional and Technical Specifications

The Functional and Technical Specifications will be published openly at the start of Phase 2. At this point
they will have been subjected to community review by the PDF Association Validation TWG and Open
Preservation Foundation members as described in CE 2.2 Specific communities.

Revisions to these documents will be made during Phase 2 on the basis of community engagement
including face-to-face events and mailing lists, for example new uses cases or technical requirements, or
updates to existing uses cases or technical requirements. There will be a formal change management
process which will require the veraPDF Consortium to publish new versions of the documents and update
the development roadmap where required.

The redesign stage of Phase 2 is anticipated to produce a revised major edition (e.g. Functional or
Technical Specification version 2) while incremental editions updating or refining single use cases or
requirements (e.g. versions 1.1 or 2.1) may be published at any time.

During Phase 3 management of these documents and the development roadmap will be turned over to the
open source community. All historical versions of all documents will be available through the veraPDF
website at all times.

CE 3.2 Corpora

PREFORMA Evaluation Criteria

D8.1 (ii) demonstration files: technology providers contribute demonstration files with good and
bad samples of the corresponding reference implementation;

Corpora will be produced for PDF/A Validation (one for each PDF/A Flavour), Policy Checking, and
Metadata Fixing (see TS 6.2 Test files). All corpora will be built and managed using community
contributions and will be subject to a formal submission and review process. In each case the review will be
the responsibility of the veraPDF partner with expertise and authority, for Validation Corpora this will be the
PDF Association Validation TWG as described in CE 2.2.1.2 PDF Validation Technical Working Group
(TWG).

Formal contribution agreements will be drafted and will be required from any submitter who wishes to
contribute to the corpora. The agreements will require the submitters to license their contributions under the
required open licences (see the original veraPDF Tender Proposal section V Test corpora and our
response to the Negotiation Report 2. Adherence to licence requirements for all digital assets developed
during the PREFORMA project). Contributions will not be accepted without the formal agreement which will
have to be signed by a designated person within each institution with authority to sign on behalf of the
institution (for example company CEO or library director).

All corpora will be managed using Git for revision control and the Git repositories will be publically available
on the veraPDF GitHub organisation page. Test files will not be added directly to the test corpora by any

20

individual. Instead, borrowing from software development best-practice, anyone wishing to extend a corpus
will first clone the test corpus repository.

Working in a local branch a contributor can add test files to the corpus. The repository README file for
each corpus will express corporus-specific acceptance criteria for submission, e.g file naming, repository
structure, technical guidelines, or accompanying documentation. Submissions must also observe these
general principles for all corpora:

● the contributor creates an issue describing the test case on the corpora GitHub issue tracker, this
should be as fine-grained / atomic as possible;

● each test file should demonstrate a pass or fail case for the atomic issue;
● no more than five test files should be added to the repository in a single commit;
● each commit has a descriptive comment that states what the committed files are.

Each submission should be made as a GitHub pull request to the veraPDF corpus repository. The pull
request should connect the issue addressed with the test files committed using GitHub flavoured
markdown. The pull request will be examined by the body responsible for the particular corpus repository
submissions and reviewed objectively using the submission criteria. If accepted, the pull request will be
merged into the veraPDF corpus repository. If the pull request can’t be merged the reviewer will inform the
contributor of the reasons and suggest appropriate changes before resubmission of the request.

CE 3.2.1 Validation Corpora

The PDF Association Validation TWG will review and approve each candidate for inclusion in the Validation
Corpora. As described above, this will ensure their authority as an objective frame of reference by involving
domain experts and members of the standards committees in approving the test files as the authoritative
realization of the PDF/A specifications.

CE 3.2.2 Policy Checking Corpus

The Open Preservation Foundation will review and approve each candidate in the Policy Checking corpus
and provide support to early adopters during Phase 2 in expressing Policy Requirements as formal Policy
Profiles.

To be accepted for testing in the prototyping phase, policy requirements must consist of:

● a textual statement of the policy, supplied by the institution;
● an owner, usually an individual from the institution who has authored the policy;
● formal rule(s) (see TS 5.2 Using Schematron for Policy Checks);
● test files that express pass and fail cases for inclusion in the corpus.

Policy Profiles and the associated Policy Checking corpus will be available through the Policy Profile
Registry (see CE 2.2.3.1 Registry of Policy Profiles).

CE 3.2.3 Progress in Phase 1

The PDF Association Validation TWG assisted in identifying gaps in existing corpora as described in Annex
C: PDF/A Test Corpora Report.

21

CE 3.3 Code

CE 3.3.1 Code acceptance

Coding standards will be automatically enforced through the projects build system. The Maven build has
PMD and Checkstyle plugins that detect and report code and coding style issues beyond just compilation
errors. All pull requests will be automatically checked firstly using these tools and secondly for test
coverage as defined in TS 6.4.1 Unit testing. If the contribution does not meet these criteria then a reviewer
- at first the open source project leader until other formal roles are assigned within the community - will
contact the contributor, via the pull request chain on GitHub, identifying improvements which are necessary
for the submission to be accepted.

Formal contribution agreements will be drafted and will be required from any submitter who wishes to
contribute to the software. The agreements will require the submitters to license their contributions under
the required open source licences (see Annex E: License Compatibility). Contributions will not be accepted
without the formal agreement which will have to be signed by a designated person within each institution
with authority to sign on behalf of the institution (for example company CEO or library director).

CE 3.4 Messaging

Validation results are delivered to veraPDF users in messages. These messages may appear in user
interfaces and Machine-readable or Human-readable Reports.

To most openly and effectively align industry interests with veraPDF, and thus maximize acceptance of the
software, the PDF Association Validation TWG will oversee and approve the Implementation Checker
messages and translations thereof (see TS 7 Internationalization).

Software instructions help files, and other operational content will be open to broader community input.

CE 3.5 Documentation

PREFORMA Evaluation Criteria

D8.1 (iii) documentation of the source code: technology providers contribute comprehensive
documentation of the source code, which allows for automated generation of the internal API of
the application;

D8.1 (iv) documentation of the software: technology providers contribute comprehensive
documentation of the conformance checker for developers, such as quick start guide, cook- books
and other tutorials;

D8.1 (v) online technical support: technology providers ensure online availability at the
development platform for technical support to other developers deploying the conformance
checker;

The original veraPDF Tender Proposal section 1.1 IV Documentation (p. 17) describes the different types of
documentation, their audience, and responsible author in detail. The only addition to this is the production
of a Frequently Asked Questions to be maintained through the project web presence responding to
common queries raised by the community. Where appropriate, these inquiries will feed into other aspects of
the development, for example as feature requests updating the Functional or Technical Specifications, or
as other contributions such code, corpora, documentation, or testing.

Since veraPDF is developed and documented openly in front of a commercially-interested community, it is
anticipated that not only will the fundamental code and documentation quality be closely monitored, but the

http://pmd.sourceforge.net/
http://checkstyle.sourceforge.net/

22

precise messaging of the software, especially with respect to validation, will be the subject of intense
scrutiny in the PDF software industry. Documentation drafts will be available with early releases of the
prototype for testing and will be subject to revision and update based on community feedback.

veraPDF will be developed with all documentation, UI elements and software interactions in English. The
initial implementation will demonstrate support for a limited number of European languages to demonstrate
the localization mechanism (see TS 7 Internationalization).

23

Functional Specification
FS Introduction

FS 1 PDF/A Validation in context

FS 1.1 ‘Shall’, ‘should’, and ‘may’ statements

FS 1.2 PDF/A, PDF, and associated standards and specifications

FS 1.2.1 PDF/A requirements beyond PDF syntax

FS 1.2.2 What PDF/A is not

FS 2 Conformance Checker components

FS 2.1 veraPDF Implementation Checker

FS 2.1.1 Use cases

FS 2.1.2 Functional description

FS 2.1.3 Functional architecture

FS 2.2 veraPDF Metadata Fixer

FS 2.2.1 Use cases

FS 2.2.2 Functional description

FS 2.2.3 Functional architecture

FS 2.3 veraPDF Policy Checker

FS 2.3.1 Use cases

FS 2.3.2 Functional description

FS 2.3.3 Functional architecture

FS 2.4 veraPDF Reporter

FS 2.4.1 Use cases

FS 2.4.2 Functional description

FS 2.4.3 Functional architecture

FS 2.5 veraPDF Shell

FS 2.5.1 User stories

FS 3 Conformance Checker extensions

FS 3.1 Parsing PDF Documents and Embedded Resources

FS 3.1.1 Use cases

FS 3.1.2 Functional description

FS 3.1.3 Functional architecture

FS 3.2 Integrations with other software

FS 3.2.1 JHOVE

FS 4 Interfaces

FS 4.1 Standalone Distribution

24

FS 4.1.1 Command Line Interface (CLI)

FS 4.1.2 Desktop Graphical User Interface (GUI-D)

FS 4.2 Server Distribution

FS 4.2.1 Web Graphical User Interface (GUI-W)

FS 4.3 Command Line Interface examples

FS 4.3.1 Implementation Checker and Metadata Fixer

FS 4.3.2 Policy Checker

FS 4.3.3 Reporter scenarios

25

FS Introduction
Section 1 describes PDF/A Validation in context, taking a detailed look at the ISO specifications and
defining the scope of the Implementation Checking functionality. Section 2 describes the functionality of the
Conformance Checker components and how they are co-ordinated by the Shell to satisfy the PREFORMA
challenge. Section 3 describes the extensibility of the Conformance Checker. Section 4 describes the user
interfaces, providing detailed examples of command line invocation of the Shell.

FS 1 PDF/A Validation in context
This section describes the relevance to validation of shall, should, and may statements within ISO
standards and details how PDF/A (ISO 19005) relates to PDF (ISO 32000) and other 3rd party standards.

The following attributes are key principles of the veraPDF Conformance Checker:

● Definitive validation against the requirements specified in all parts and conformance levels of PDF/A
(ISO 19005-1, 19005-2 and ISO 19005-3) including the 2007 and 2011 Technical Corrigenda to ISO
19005-1.

● Extensibility to cover non-native data-structures and features of PDF (ISO 32000) not addressed in
PDF/A (see FS 3.1 Parsing PDF Documents and Embedded Resources);

● Industry acceptance - because the software is designed, built, tested, and assessed, in front of
leading PDF software developers (see CE 2.1 The veraPDF ecosystem).

FS 1.1 ‘Shall’, ‘should’, and ‘may’ statements

veraPDF defines the relevance to validation of statements within standard specifications as follows:

● The software will address “shall” and “shall not” statements in the Implementation Checker, as
compliance with these statements is required for normative PDF/A Validation (see Annex C: PDF/A
Test Corpora Report);

● The software will address “should”, and “may” statements in the Policy Checker, as these
statements do not affect normative PDF/A Validation (see Annex C.3 PDF/A “Should” and “May”
Clauses);

● In addition to file format requirements, PDF/A includes requirements for “conforming reader”
software to ensure consistent rendering of text and graphics. As visual rendering is out of scope in a
file format validator, veraPDF does not address requirements for a conforming reader.

FS 1.2 PDF/A, PDF, and associated standards and specifications

The specification for PDF/A is a set of restrictions and requirements applied to the “base” PDF standards
(PDF 1.4 for PDF/A-1 and ISO 32000 for PDF/A-2 and PDF/A-3) plus a specific set of 3rd party standards
(see Table 1).

PDF files may include many other types of data structures. Apart from those defined in ISO 32000 itself,
that specification includes 80 third-party documents as normative references.

Where necessary to the goals of PDF/A, ISO 19005 identifies the specific clauses within either PDF 1.4 or
ISO 32000, or specific third-party documents, to which conformance requirements apply. Involvement from
these 3rd party communities is anticipated (see CE 2.2.2 Other domains / communities / standards).

FS 1.2.1 PDF/A requirements beyond PDF syntax

As noted above, PDF/A directly references 3rd party data structures defined elsewhere, including images,
fonts, ICC profiles and more. These are enumerated fully in the table below. Addressing validity criteria in

http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=45613
http://www.iso.org/iso/home/store/catalogue_tc/catalogue_detail.htm?csnumber=60603

26

these 3rd party standards is required for a definitive PDF/A conformance checker.

Although the software design will be extensible to any feature of PDF, and to any type of object that may be
utilized or contained in PDF files, the PREFORMA-funded veraPDF Implementation Checker will check
only those requirements made explicit in the text of ISO 19005. Clauses not explicitly required in ISO 19005
are considered out of scope.

Some examples:

● JPEG2000: veraPDF will refer to ISO 32000-1 for validation of JPEG2000 compressed objects
because PDF/A-2 clause 6.2.8.3 states: “JPEG2000 compression shall be used as specified in ISO
32000-1:2008.” However, veraPDF will not validate JPEG2000, only the manner in which such
objects are encoded as per ISO 32000;

● Fonts: veraPDF will determine whether font widths are encoded consistently (as is required in
PDF/A-2 clause 6.2.11.5), however since deeper font validation is not explicitly required in PDF/A it
will not check other font data such as glyph outlines.

● ICC Profiles: veraPDF will check the header section of the embedded ICC profiles to make sure the
profile version and class conform to the PDF/A specifications (for example, PDF/A-2 clauses 6.2.3
and 6.2.4.2), but it will not perform the complete validation of the embedded ICC stream against
relevant ICC specifications (ICC.1:1998-09, ICC.1:2001-12, ICC.1:2003-09 or ISO 15076-1);

● Tagged PDF: the literal requirements in PDF 1.4 and ISO 32000-1:2008 for Tagged PDF are very
limited, and PDF/A does not expand significantly on these requirements for its conformance level a.
Accordingly, veraPDF will perform only those limited checks on Tagged PDF files as are required by
PDF/A and relevant sections of PDF 1.4 and ISO 32000-1:2008 specifications (see Annex C.2
Tagged PDF Test Suite for the full list of Tagged PDF clauses and the corresponding test cases).

The veraPDF strategy for 3rd party specifications referenced by PDF/A is defined in the following table.

Feature PDF/A 3rd Party Spec Strategy

ICC color
profiles

PDF/A-1: All ICCBased colour
spaces shall be embedded as
ICC profile streams as
described in PDF Reference
4.5.

PDF/A-2: The profile that forms
the stream of an ICCBased
colour space shall conform to
ICC.1:1998-09, ICC.1:2001-12,
ICC.1:2003-09 or ISO 15076-1.

PDF/A-3: As PDF/A-2

ICC.1:1998-09;

ICC.1:2001-12;

ICC.1:2003-09;

ISO 15076-1

Read and validate profile
version number, Device Class
signature, Color Space of Data
in the ICC profile header, but do
not validate other data.

Provide third-party plug-in
mechanism for custom ICC
profile validation.

27

Feature PDF/A 3rd Party Spec Strategy

Image
compression

PDF/A-1: The LZWDecode filter
shall not be permitted.

PDF/A-2: All standard stream
filters listed in ISO 32000-
1:2008, 7.4, Table 6 may be
used, with the exception of
LZWDecode

PDF/A-3: As PDF/A-2

ITU Recommenda-
tions T.4 and T.6;

JBIG2
Specification;

ISO/IEC 10918
(JPEG),
Adobe Technical
Note #5116,
Supporting the

DCT Filters in
PostScript Level 2

Provide plug-in mechanism for
third party tools to validate the
compressed images, but do not
validate them internally.

JPEG2000 PDF/A-1: not permitted

PDF/A-2: JPEG2000
compression shall be used as
specified in ISO 32000-1:2008.
Only the JPX baseline set of
features, as restricted or
extended by ISO 32000-1:2008
and this subclause, shall be
used.

PDF/A-3: As PDF/A-2

ISO/IEC 15444-2 Check all Color Specification
boxes (‘colr’), Image Header
Box (‘ihdr’) and check the
absence of Bits Per Component
box (‘bpcc’). Validate the
embedded ICC profile as
described above, if the
ColorSpace key in the PDF
Image dictionary is absent.

Provide third-party plug-in
mechanism for custom
JPEG2000 validation, but

do not perform any deeper
validation internally.

Font
embedding

PDF/A-1: The font programs for
all fonts used within a
conforming file shall be
embedded within that file, as
defined in PDF Reference 5.8.

PDF/A-2: All fonts and font
programs used in a conforming
file, regardless of rendering
mode usage, shall conform to
the provisions in ISO 32000-
1:2008, 9.6 and 9.7, as well as
to the font specifications
referenced by these provisions.

PDF/A-3: As PDF/A-2

Adobe Type 1 Font
Format;

TrueType
Reference Manual;

Adobe Technical
Note #5176;

ISO/IEC 14496-
22:2009

Parse widths and validate the
presence of the glyphs used in
PDF page content; validate the
presence of the required tables
in TrueType/ OpenType fonts,
check that the font is legally
embedded, but do not validate
any further details of font
program

Provide third-party plug-in
mechanism for font validation.

28

Feature PDF/A 3rd Party Spec Strategy

CJK
encodings,
Unicode
character
maps

PDF/A-1: All CMaps used within
a conforming file, except
Identity-H and Identity-V, shall
be embedded in that file as
described in PDF Reference
5.6.4.

PDF/A-2: All CMaps used within
a PDF/A-2 file, except those
listed in ISO 32000-1:2008,
9.7.5.2, Table 118, shall be
embedded in that file as
described in ISO 32000-1:2008,
9.7.5.

PDF/A-3: As PDF/A-2

Adobe Technical
Note #5014 Adobe
CMap and CIDFont
Files Specification

Validate the complete CMap
stream and its consistency with
other PDF data.

Digital
signatures

PDF/A-1: Not specified

PDF/A-2: As permitted by ISO
32000-1:2008, 12.8.1, a PDF/A-
2 conforming file may contain
document, certifying or user
rights signatures. Such
signatures shall be specified in
the PDF through the use of
signature fields in accordance
with ISO 32000-1:2008,
12.7.4.5.

PDF/A-3: As PDF/A-2

PDFA TN0006 -
Digital Signatures
in PDF/A-1;

RFC 3280, Internet
X.509 Public Key
Infrastructure,
Certificate and
Certificate
Revocation List
(CRL) Profile

Validate the presence of keys
and values prescribed by ISO
32000-1:2008 but do not
perform the cryptographic
validation of the signature.

Provide the third-party plug-in
mechanism to validated the
embedded PKCS#1 and
PKCS#7 certificates.

Metadata PDF/A-1: All metadata streams
present in the PDF shall
conform to the XMP
Specification.

All content of all XMP packets
shall be well-formed, as defined
by Extensible Markup Language
(XML) 1.0 (Third Edition), 2.1,
and the RDF/XML Syntax
Specification (Revised).

PDF/A-2: As PDF/A-1

PDF/A-3: As PDF/A-1

XML 1.0 (W3C
Recommendation
04 Feb 2004);
RDF/XML Syntax
Specification (W3C
Recommendation
10 Feb 2004);
XMP Specification

Parse all embedded XMP
packages at all levels. Validate
that XMP metadata is well-
formed according to W3C
schema for RDF/XML. Validate
all requirements on permitted
XMP schemas as well as the
consistency with Info dictionary.

Provide third-party plug-in
mechanism for metadata format
validation.

29

Feature PDF/A 3rd Party Spec Strategy

Attached files PDF/A-1: Not permitted

PDF/A-2: Only PDF/A-1 and
PDF/A-2 attachments are
permitted

PDF/A-3: allows for embedding
of files of any type, but imposes
certain requirements
for embedded files that go
beyond what ISO 32000-1
requires.

Any (depends on
the attached file)

PDF/A-1: None.

PDF/A-2: validate attachments
(PDF/A attachments only).

PDF/A-3: Validate PDF/A
attachments, but do not validate
them internally.

Provide third-party plug-in
mechanism for external format
validation.

Table 1: validation required by explicit references beyond the text of the PDF/A specifications

Deeper analysis of the definitive validation for embedded ICC profiles and Fonts is provided in Annex G
ICC Profile Checks for PDF/A Validation and Annex H Embedded Font Checks for PDF/A Validation. They
serve mainly as an overview of the complexity for the definitive validation of PDF/A including all embedded
files and are subject to review and collaboration with the experts in the corresponding areas (see CE 2.2.2
Other domains / communities / standards).

To encourage the alignment of 3rd party development efforts with veraPDF, the plugin mechanism
facilitates collaboration with 3rd party technology communities (see FS 3 Conformance Checker
extensions).

FS 1.2.2 What PDF/A is not

PDF/A concentrates on key matters of interest to memory institutions, introducing restrictions on usage of
the larger PDF specifications (PDF 1.4 for PDF/A-1 and ISO 32000 for PDF/A-2 and PDF/A-3). PDF/A does
not account for every possible reason why a PDF Document may be unusable in whole or in part and by
itself is not a panacea for any possible problem with archivable electronic documents.

The table below gives examples of factors that may impact Document reliability but are out of scope for
PDF/A validation purposes. These examples demonstrate the types of problem; it is not an exhaustive
listing of all possible non-PDF/A issues relating to Document reliability.

Out of scope for PDF/A validation Possible consequence

Corrupt images (e.g. JPEG2000 or other). Image content may not be legible.

Corrupt or poorly subsetted font programs. Text content may not be legible.

Invalid data relevant to high-end printing (printer’s marks,
device colorant data, trapping support and other features
specific to high-end print implementations).

Inconsistent results in high-end printing.

Content outside the PDF page crop box. Content may be present (and thus,
searchable) but not displayed on the page.

Invalid encoding of semantics in the document’s logical
structure.

The document may not be reliably
repurposed using PDF logical structure
mechanisms.

Table 2: Examples of potential reliability concerns not addressed by PDF/A

30

FS 2 Conformance Checker components
This section describes the modular components that make up the veraPDF Conformance Checker.

FS 2.1 veraPDF Implementation Checker

The Implementation Checker parses and analyzes PDF Documents. It outputs two types of report: a PDF
Features Report describing the PDF Document and its PDF Metadata and a Validation Report describing
conformance to PDF/A Flavours.

FS 2.1.1 Use cases

FS 2.1.1.1 Generate a PDF Features Report

A user requests a report describing the details of features found in a PDF Document (including its
metadata, Document information such as number of pages, and information about embedded files such as
fonts, images, or color spaces). The user doesn’t want to establish whether the PDF Document conforms to
a PDF/A Flavour but wants a Machine-readable Report that can be stored in a repository system for later
use by the Policy Checker (for example when enforcing a new institutional policy or analysing the content of
a repository). This report is used by the Policy Checker and its formatting is handled by the Reporter.

Input Byte Sequence believed to be a PDF Document

Output PDF Features Report

Options The user can pass the PDF Features Report for Policy Checking or serialise the
Report to a Machine-readable or Human-readable format via the Reporter.

Extensions The Reporter enables transformations of the PDF Features Report (see FS 2.4
veraPDF Reporter)

Exceptions If the Byte Sequence cannot be identified as a PDF Document or is too malformed to
be parsed successfully then the Implementation Checker will report this as an error.

FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour

A user requests a report detailing the conformance of a PDF Document with a PDF/A Flavour and listing all
errors. The formatting of the Validation Report is handled by the Reporter.

Input Byte Sequence believed to be a PDF Document

Output Validation Report

Options The user must pass a parameter specifying the PDF/A Flavour. The Implementation
Checker loads the Validation Profile relating to the PDF/A Flavour.

The user can pass a parameter instructing the Implementation Checker to stop
processing after a set number of errors have occurred.

Extensions The Reporter enables transformations of the Validation Report (see FS 2.4 veraPDF
Reporter)

31

Exceptions If the Byte Sequence cannot be identified as a PDF Document or is too malformed to
be parsed successfully then the Implementation Checker will report this as an error.

FS 2.1.2 Functional description

The veraPDF Implementation Checker provides the following functionality:

● parsing a PDF Document to generate a PDF Features Report;
● parsing the PDF Document and Validation Profile to check conformance to a PDF/A Flavour and

generate a Validation Report.

The Implementation Checker relies on a PDF library for PDF parsing (see FS 3.1.1.1 PDF Parsers). The
original veraPDF Tender Proposal described two approaches: development of a greenfield PDF Parser
built from scratch and an option to use PDFBox. The important architectural point is that our design is
‘parser-agnostic’: the PDF Parser can be changed without affecting the functionality of the Implementation
Checker.

Implementation Checking relies on parsing the PDF Document and running Validation Tests defined in the
Validation Profiles for each PDF/A Flavour. The general model for format validation is described in TS 2
Validation Model and the Validation Profile format is defined in TS 3 Validation Profile format. Validation
Profiles will be supplied for all PDF/A Flavours covered in the PREFORMA Challenge and subjected to the
review of the PDF Association Validation TWG (see CE 2.2.1 Industry and Standards).

The Implementation Checker generates a PDF Features Report and a Validation Report. The complete
report format for both types of Report is defined in TS 4 Machine-readable Report format.

The PDF Features Report includes all information about the PDF Document. In summary, this includes:

● PDF Metadata:
○ the information dictionary;
○ all available XMP metadata packages;

● Low-level PDF information, including:
○ document-level information: Document ID, date/time stamps; number of indirect objects,

trailer keys; output intent; conformance claims; trapping; number of pages; colorants;
○ page level information: bounding boxes, resources, annotations;
○ resource information: the type of resource and its properties;
○ annotation information;
○ form fields information;
○ details of filters, encryption, digital signatures.

The Validation Report gives the results of PDF/A Validation. In summary, this includes:

● pass/fail on conformance against the specified PDF/A Flavour;
● detailed results from tests of all normative statements in the PDF/A specifications (“shall”, “should”

and “may” statements) according to the chosen PDF/A Flavour.

The Validation Checks are carried out at the following levels:

● File I/O requirements for the low-level PDF syntax as such as binary header format, spacing and
end of line symbol requirements;

● PDF syntax rules for required/forbidden/recommended/permitted keys and their respective value
types are performed after the PDF document is opened;

32

● Higher level tests (metadata, output intent, color space compliance, etc) requiring complex logic not
limited to a single key/value pair in the PDF dictionary;

● Graphics content tests are checked by parsing the content streams of the following objects:
○ page content streams for all pages present in the page tree;
○ annotation appearance streams;
○ form field appearance streams (widget annotations);
○ content streams for the Form XObject, Tiling Pattern, and Type3 Font resource types;

● Checking for the glyphs present in an embedded font file, this first entails collecting all glyphs used
in the document. The check is an example of a post-action, which must be deferred until all checks
they depend upon are complete;

● Checks for Embedded Resources governed by the external specifications (images, fonts, colour
profiles) are performed as described in FS 1.2.1 PDF/A requirements beyond PDF syntax and FS
3.1.1.2 Embedded Resource Parsers).

FS 2.1.3 Functional architecture

The user passes a PDF Document to the Conformance Checker. The Implementation Checker generates a
PDF Features Report. The Implementation Checker processes the PDF Document against the Validation
Profile corresponding to the requested PDF/A Flavour and generates a Validation Report. Both reports are
passed to the Reporter for reformatting.

33

FS 2.2 veraPDF Metadata Fixer

The Metadata Fixer makes well-defined, discrete fixes to PDF Metadata within PDF Documents so that it
complies with a PDF/A Flavour. The Metadata Fixer produces a Repaired PDF Document that is a fixed
version of the original and a Metadata Fixing Report which describes the fixes attempted and their success
or failure.

FS 2.2.1 Use cases

FS 2.2.1.1 Remove invalid PDF/A Metadata and produce a new PDF Document

A user requests that a PDF Document is checked for validity against the PDF/A Flavour claimed in the PDF
Metadata and requests that the PDF Metadata is fixed based on the results of the Validation. A report on
the Metadata Fixing is requested and its formatting is handled by the Reporter

Depending on the results of the Validation, the possible outcomes are:

● If the PDF Document fails Validation but claims PDF/A Flavour conformance in the PDF Metadata
then a Repaired PDF Document is created without the conformance claim in the PDF Metadata;

● If the file passes validation but the PDF Document does not claim PDF/A Flavour conformance in
the PDF Metadata then a Repaired PDF Document is created with the conformance claim in the
PDF Metadata;

● In other cases (a PDF Document which correctly claims or does not claim PDF/A Flavour
conformance) then nothing is done (a Repaired PDF Document is not produced but a Metadata
Fixing Report is still produced).

Input PDF Document

Validation Report

Output Repaired PDF Document

Metadata Fixing Report

Options To overwrite the input stream, where possible.

Extensions The Reporter enables transformations of the Metadata Fixing Report (see FS 2.4
veraPDF Reporter)

Exceptions If the PDF Metadata is malformed (but embedded correctly) the Metadata Fixer may
be unable to repair the PDF Document. In this case, the Metadata Fixer reports an
error.

FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document

A user requests that a PDF Document is checked for validity against a specified PDF/A Flavour and
requests that the PDF Metadata is fixed based on the results of the validation. A Validation Profile identifies
possible fixes for each Validation Test and these are passed to the Metadata Fixer. A report on the
Metadata Fixing is requested and its formatting is handled by the Reporter.

34

Input PDF Document

Validation Report

Output Repaired PDF Document

Metadata Fixing Report

Options To overwrite the input stream, where possible.

Extensions The Reporter enables transformations of the Metadata Fixing Report (see FS 2.4
veraPDF Reporter)

Exceptions If the PDF Metadata is malformed (but embedded correctly) the Metadata Fixer may
be unable to repair the PDF Document. In this case, the Metadata Fixer reports an
error.

FS 2.2.2 Functional description

The veraPDF Metadata Fixer performs a predefined set of actions to correct problems affecting the PDF
Metadata of an otherwise valid PDF/A Document, or removing the PDF/A Metadata in the case of a PDF
Document that does not conform to PDF/A. The Metadata Fixer always creates a Repaired PDF Document
and leaves the decision to overwrite the original in the hands of the user. The Metadata Fixer generates a
Metadata Fixing Report that describes the fixes carried out and details of the Repaired PDF Document or
describes any problems encountered if the file could not be fixed.

Fixes attempted by the Metadata Fixer will include the following, which have been subject to review by the
PDF Validation TWG as described in CE 2.2.1.2 PDF Validation Technical Working Group (TWG).

FS 2.2.1.1 Remove invalid PDF/A Metadata and produce a new PDF Document

● adding PDF/A Identification to an otherwise valid PDF/A Document;
● removing PDF/A Identification from a PDF document that fails the validation.

FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document

● synchronizing Info dictionary with document XMP Metadata (only for PDF/A-1);
● adding default XMP package or predefined schemas if they are missing in the PDF Metadata.

The Metadata Fixer will also provide an interface for third-party modification of XMP packages.

35

FS 2.2.3 Functional architecture

A PDF Document is passed to the Conformance Checker for Validation and Metadata Fixing. The
Implementation Checker processes the PDF Document producing a PDF Features Report and Validation
Report. The Validation Profile identifies possible fixes which are passed to the Metadata Fixer to be
attempted. The Metadata Fixer produces a Repaird PDF Document and a Metadata Fixing Report detailing
the success/failure of each fix. The new PDF Document is passed back to the Implementation Checker
which produces a new PDF Features Report and Validation Report. These new reports, and the Metadata
Fixing Report, are added to the Machine-readable Report and passed to the Reporter.

Note that for the sake of simplicity the Machine-readable Reports have been left out of this diagram.

FS 2.3 veraPDF Policy Checker

The Policy Checker parses and analyzes a PDF Features Report and generates a Policy Report stating
whether the PDF Document complies with institutional policy as expressed in a Policy Profile.

Some examples of institutional policy statements could include:

● require all “should” and “may” clauses in the PDF/A specifications to be enforced;
● accept PDF/A-2 files but reject embedded images in a specific format (e.g. JPEG 2000 which is

permitted by PDF/A-2);
● disallow documents containing particular fonts (e.g. ComicSans) or particular types of fonts (e.g.

TrueType) even if they are embedded as specified by PDF/A;
● accept PDF/A-3 files but restrict the permissible formats of attachments (e.g. accept only CSV

attachments for a particular collection);
● disallow the use of particular types of embedded XMP metadata, OR insist that a particular type of

XMP metadata is present, in line with submission criteria.

36

Institutional policy requirements will be gathered, prototyped as Policy Profiles, and made available to the
community as described in CE 2.2.3 Memory institutions.

FS 2.3.1 Use cases

FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements

A user requests a report detailing whether a PDF Document conforms to institutional policy. They must
supply their policy requirements as a formal Policy Profile. They may supply the PDF Document itself to the
Conformance Checker to produce a PDF Features Report as described in FS 2.1.1.1 Generate a PDF
Features Report or they may supply an existing PDF Features Report retrieved from storage, for example a
repository. The formatting of the Policy Report is handled by the Reporter.

Input PDF Features Report for the PDF Document

Policy Profile (expressing institutional policy as formal rules)

Output Policy Report

Options The user can pass a parameter instructing the Policy Checker to stop processing after
a set number of errors have occurred

Extensions The user may integrate Embedded Resource Parsers making an Embedded Resource
Report available to the Policy Checker (see FS 3.1.1.2 Embedded Resource Parsers)

The Reporter enables transformations of the Policy Report (see FS 2.4 veraPDF
Reporter)

Exceptions If a PDF Features Report cannot be generated as described in FS 2.1.1.1 Generate a
PDF Features Report then a Policy Report cannot be generated.

FS 2.3.1.2 Author a new Policy Profile

A user wishes to express their institutional policy as a Policy Profile so that the Policy Checker can check
the conformance of a PDF Document as described in FS 2.3.1.1 Check the conformance of a PDF
Document to institutional policy requirements. They may create the Policy Profile at any time, regardless of
whether PDF Documents are to be processed by the Conformance Checker. They may change their policy
requirements and produce a new Policy Profile which can be used to process PDF Documents via the
Implementation Checker or existing PDF Features Reports which have been generated and stored as
described in FS 2.1.1.1 Generate a PDF Features Report.

Note that authoring a Policy Profile does not depend on the Conformance Checker per se, but on an
external editor. The user may require technical skills to author the Policy Profile according to the required
format which is specified in TS 5 Policy Profile.

Input Institutional policy (expressed as free text)

Output Policy Profile (expressing institutional policy as formal rules)

37

Options Creating a Policy Profile can be done using a simple text editor or using a format-
specific editor as described in TS 5 Policy Profile.

Extensions Sharing Policy Profiles between institutions is enabled by the Policy Profile Registry,
see CE 2.2.3.1 Registry of Policy Profiles.

Test files demonstrating pass/fail of the Policy Checks can be submitted as described
in CE 3.2.2 Policy Checking Corpus.

Exceptions A malformed Policy Profile will cause the Policy Checker to report an error.

FS 2.3.2 Functional description

The Policy Checker processes a PDF Features Report applying the rules expressed in a Policy Profile and
generating a Policy Report. The Policy Report contains information about the conformance of the PDF
Document against institutional policy requirements. The format of the report is described in TS 4 Machine-
readable Report format.

The Policy Checker is independent of the Implementation Checker to the extent that it can operate on the
PDF Features Report without invoking the PDF/A Validation functionality of the Implementation Checker.

38

FS 2.3.3 Functional architecture

FS 2.4 veraPDF Reporter

The Reporter transforms the Machine-readable Reports generated by the Implementation Checker, Policy
Checker, and Metadata Fixer into other forms. It is supplied with standard Report Templates and users can
define their own. Reports can be Human-readable (including HTML and PDF) or Machine-readable
(including XML and other formats supported by external systems such as workflows or repositories).

39

FS 2.4.1 Use cases

FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

A user wishes to obtain a Machine-readable Report containing one or more of:

● PDF Features Report as described in FS 2.1.1.1 Generate a PDF Features Report;
● Validation Report as described in FS 2.1.1.2 Generate a Validation Report;
● Policy Report as described in FS 2.3.1.1 Check the conformance of a PDF Document to institutional

policy requirements;
● Metadata Fixing Report as described in FS 2.2.1.1 Remove invalid PDF Metadata and produce a

new PDF Document and FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document.

The user chooses a predefined Report Template or supplies a custom Report Template (see FS 2.4.1.4
Author a new Report Template). They may configure a verbosity level to control the amount of information
in the Report.

Input Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

Report Template

Output Machine-readable Report in the specified format

Options The user may specify a verbosity level to control the amount of information contained
in the Machine-readable Report.

Extensions Report Templates enable the generation of reports in custom formats. This can be
used to output to JSON, PREMIS (XML), SWORD, or other formats understood by
external systems such as workflow managers or repository systems.

Internationalisation enables the translation of of Machine-readable Reports into
languages other than English, see TS 7 Internationalization.

Exceptions A malformed Report Template will cause the Reporter to report an error.

FS 2.4.1.2 Obtain a Human-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

A user wishes to obtain a Human-readable report containing one or more of:

● PDF Features Report as described in FS 2.1.1.1 Generate a PDF Features Report;
● Validation Report as described in FS 2.1.1.2 Generate a Validation Report;
● Policy Report as described in FS 2.3.1.1 Check the conformance of a PDF Document to institutional

policy requirements;
● Metadata Fixing Report as described in FS 2.2.1.1 Remove invalid PDF Metadata and produce a

new PDF Document and FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document.

The user chooses a predefined Report Template or supplies a custom Report Template (see FS 2.4.1.4
Author a new Report Template). They may configure a verbosity level to control the amount of information
in the Report.

40

Input Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

Report Template

Output Human-readable Report

Options The user may specify a verbosity level to control the amount of information contained
in the Human-readable Report.

Extensions Report Templates enable the generation of reports in custom formats. This can be
used to output to HTML, PDF, or other user-specified formats.

Internationalisation enables the translation of of Machine-readable Reports into
languages other than English, see TS 7 Internationalization.

Report Templates supplied by veraPDF will be consistent with accessibility best
practices as described in TS 8.2 Accessibility.

Exceptions A malformed Report Template will cause the Reporter to report an error.

FS 2.4.1.3 Obtain Machine-readable or Human-readable Reports for a batch of PDF Documents

A user wishes to obtain a Machine-readable Report or Human-readable report as described in FS 2.4.1.1
Obtain a Machine-readable Report (PDF Features, Validation, Policy) or FS 2.4.1.2 Obtain a Human-
readable Report (PDF Features, Validation, Policy) but for a batch of PDF Documents. They may request a
summary of multiple Machine-readable or Human-readable Reports, for example summarising PDF
Features, Validation Checks, or Policy Checks across the batch.

Input Machine-readable Reports (PDF Features, Validation, Policy, Metadata Fixing)

Report Template

Output Machine-readable Report and/or Human-readable Report

Options The user may specify a verbosity level to control the amount of information contained
in the Machine-readable or Human-readable Report.

Extensions Report Templates enable the generation of reports in custom formats. This can be
used to outputs to HTML, PDF, or other user-specified formats.

Internationalisation enables the translation of of Machine-readable Reports into
languages other than English, see TS 7 Internationalization.

Report Templates supplied by veraPDF will be consistent with accessibility best
practices as described in TS 8.2 Accessibility.

Exceptions A malformed Report Template will cause the Reporter to report an error.

41

FS 2.4.1.4 Author a new Report Template

A user wishes to define a new format for Machine-readable or Human-readable Reports so that they can be
produced as specified in FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy),
FS 2.4.1.2 Obtain a Human-readable Report (PDF Features, Validation, Policy), or FS 2.4.1.3 Obtain
Machine-readable or Human-readable Reports for a batch of PDF Documents.

They may create the Report Template at any time, regardless of whether any Reports are to be processed
by the Reporter. They may change their formatting requirements and produce a new Report Template
which can be used to process reports generated via the Implementation Checker, Policy Checker, or
Metadata Fixer or to process existing PDF Features Reports, Validation Reports, Policy Reports, or
Metadata Fixing Reports which have been generated and stored previously.

Note that authoring a Report Template does not depend on the Conformance Checker per se, but on an
external editor. The user may technical skills to author the Report Template according to the required
format which is specified in TS 8 Report Template format.

Input Formatting requirements (such as the schema for a Machine-readable format or design
preferences expressed as free text)

Output Report Template (expressing formatting requirements as formal rules)

Options Creating a Report Template can be done using a simple text editor or using a format-
specific editor as described in TS 8 Report Template format.

Extensions A Report Template can operate on any information contained in Machine-readable
Reports. This may include information produced by 3rd-party parsers as described in
TS 9 Integration with third-party tools.

Exceptions A malformed Report Template will cause the Reporter to report an error.

FS 2.4.2 Functional description

The Reporter parses and transforms Validation Reports from the Implementation Checker, Policy Reports
from the Policy Checker, and Metadata Fixing Reports from the Metadata Fixer. It outputs Machine-
Readable Reports and Human-readable Reports according to Report Templates.

The Machine-Readable Report format is defined in TS 4 Machine-readable Report format and Report
Templates are defined in TS 8 Report Template format.

42

FS 2.4.3 Functional architecture

One of more PDF Documents are passed to the Conformance Checker. Machine-readable Reports are
generated by the Implementation Checker, Policy Checker, or Metadata Fixer (for simplicity, the diagram
shows only the Implementation Checker but the reporter also handles input from the Policy Checker and
Metadata Fixer). A Report Template is applied to the Machine-readable Reports and a reformatted
Machine-readable Report or Human-readable Report is generated. In batch mode, the reformatted reports
can include summaries across Machine-readable Reports generated from multiple PDF Documents (see
FS 2.5.1.5 Automated, periodical, or batch Conformance Checking).

FS 2.5 veraPDF Shell

The Shell manages the other components and their interaction, providing coordinated sequences of
actions. Users interact with the Shell through the Command Line Interface, Desktop Graphical User
Interface, or Web Graphical User Interface as described in FS 3 Interfaces.

FS 2.5.1 User stories

User stories for the Shell describe higher-level scenarios which require the coordination of Conformance
Checker components by the Shell. These user stories combine use cases of the other components into
sequences of actions.

FS 2.5.1.1 Conformance Checking at Digitization

A digitization studio operator is producing PDF Documents from photographed content and wants to ensure
that the files they produce satisfy established acceptance criteria. The operator may be based at an internal
digitization studio at a memory institution or an external digitization supplier who has been contracted on
the basis of a tender which defines the acceptance criteria. They request a summary report to be submitted
along with their project documentation or invoice.

43

For example, the acceptance criteria may specify:

● conformance to a PDF/A Flavour;
● embedded images in a certain format;
● a summary report in a human-readable format.

This user story combines the following use cases:

● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.2 Obtain a Human-readable Report (PDF Features, Validation, Policy).

Input PDF Document(s)
Policy Profile (optional)
Report Template (optional)

Output Human-readable Report (containing a summary of the PDF Document(s))

Options The user may choose to run the Conformance Checker over a directory of files using
the batch mode (see FS 2.5.1.7 Batch or periodical Conformance Checking)

Extensions The digitization studio operator may choose to integrate the Conformance Checker into
a digitization workflow manager (such as Goobi). They may do this using the Library
API or the REST API. They may supply a Report Template for transforming Machine-
readable Reports into formats understood by the workflow manager.

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.2 Conformance Checking at Creation Time

A content producer wants to ensure that PDF Documents generated by office suites or managed by an
Electronic Document and Records Management System (EDRMS) conform to established acceptance
criteria. They may want to be alerted when a file is produced or uploaded to an EDRMS that does not meet
the criteria.

For example, the acceptance criteria may specify:

● conformance to a PDF/A Flavour;
● the use of only certain fonts;
● a notification should alert a nominated person on file upload.

This user story combines the following use cases:

● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy).

Input PDF Document(s)
Policy Profile (optional)
Report Template (optional)

44

Output Machine-readable Report (containing Validation Report(s) and/or Policy Report(s))

Options The content producer may run the Conformance Checker in batch or periodical mode
to process multiple documents at defined intervals.

The content producer may invoke the Metadata Fixer to attempt fixes to PDF
Documents. They may choose to overwrite the original or keep both versions.

Extensions The content producer may supply a Report Template to transform the Validation
Report and/or Policy Report into a format understood by an EDRMS.

The content creator may integrate the Conformance Checker into an EDRMS to
manage automated checking on file uploads and handle notifications to a content
manager.

The content creator may require that office suites procured for use within their
organisation use veraPDF to check PDF Documents as they are created.

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.3 Pre-submission Conformance Checking by Content Producers

A content producer wants to check a submission for conformance to established acceptance criteria. They
want to include the results of the Conformance Checker in the Submission Information Package (SIP).
They may want to attempt fixes to the PDF Documents and include fixed files in the submission (either
duplicating or replacing the existing files).

For example, the acceptance criteria may specify:

● conformance to a PDF/A Flavour;
● the use of only certain fonts;
● machine-readable reports generated in a format understood by the target submission system.

This user story combines the following use cases:

● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document;
● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.3 Obtain Machine-readable or Human-readable Reports for a batch of PDF Documents.

Input PDF Document(s)
Policy Profile (optional)
Report Template (optional)

Output Machine-readable report (containing Validation Report(s) and/or Policy Report(s)
and/or Metadata Fixing Report(s)) in a format that can be included in the SIP.

Fixed PDF Document(s)

Options The content producer may invoke the Metadata Fixer to attempt fixes to PDF
Documents. They may choose to overwrite the original or keep both versions.

45

Extensions The user may supply a Report Template to transform the Machine-readable Report
into a specific format for use in the SIP (for example PREMIS, ISAD(G), BagIt).

The content producer may integrate the Conformance Checker into another system
which manages the SIP creation and/or transfer to the archive.

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.4 Conformance Checking at transfer

A user at a memory institution wants to check a received Submission Information Package (SIP) for
conformance to established acceptance criteria. The SIP may contain one or more PDF Documents. The
user must unpack the SIP (for example if it is encoded in whole or in part using TAR or METS) and pass
the PDF Documents to the Conformance Checker.

For example, the acceptance criteria may specify:

● conformance to a PDF/A Flavour;
● forbidding images in certain formats;
● machine-readable reports generated in a format understood by the institution’s repository system.

This user story combines the following use cases:

● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.3 Obtain Machine-readable or Human-readable Reports for a batch of PDF Documents.

Input PDF Document(s)
Policy Profile (optional)
Report Template (optional)

Output Machine-readable report or Human-readable Report (containing Validation Report(s)
and/or Policy Report(s) and/or Metadata Fixing Report(s))

Options The user may invoke the Metadata Fixer to attempt fixes to PDF Documents. They
may choose to overwrite the original or keep both versions.

Extensions The user may choose to automate the Conformance Checker based on notifications
from a transfer manager (for example an application watching for changes to a file
system location or a success message from an FTP client).

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.5 Archival Information Update at Ingest

A user at a memory institution wants to generate detailed information about PDF Documents within a
Submission Information Package and include this information with the Archival Information Package.

46

This user story combines the following use cases:

● FS 2.1.1.1 Generate a PDF Features Report;
● FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy).

Input PDF Document(s)

Output Machine-readable Reports (containing any of Validation, Policy, or Metadata Fixing)

Options The user may invoke the Implementation Checker or Policy Checker to produce a
Validation or Policy Report and include these in the AIP.

The user may invoke the Metadata Fixer to attempt fixes to PDF Documents. They
may choose to overwrite the original or keep both versions.

Extensions The user may choose to integrate the Conformance Checker into an existing repository
system (for example Archivematica or DSpace).

The user may choose to supply a Report Template to transform the Machine-readable
Reports into formats compatible with their repository system.

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.6 Conformance Checking at migration

A user at a memory institution wishes to migrate an arbitrary set of files to PDF/A according to institutional
format policy. The user controls the migration process using separate software (for example an office suite
or PDF editing application) and requests that the migrated PDF Document is checked for conformance to a
PDF/A Flavour and/or Policy Profile. If both documents are PDF Documents (i.e. a PDF to PDF/A
migration, or a migration between PDF/A Flavours) the user may request two PDF Features Reports so
they they can compare significant properties to determine whether the file has been altered in unacceptable
ways (for example losing pages or images). In this case, the user must compare the two PDF Features
Reports using separate software to look for changes.

 This user story combines the following use cases:

● FS 2.1.1.1 Generate a PDF Features Report;
● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.3 Obtain Machine-readable or Human-readable Reports for a batch of PDF Documents;
● FS 2.4.1.4 Author a new Report Template.

Input PDF Document(s)
Report Template (optional)

Output Machine-readable Reports (containing any of Validation, Policy, or Metadata Fixing)

Options The user may invoke the Metadata Fixer to attempt fixes to PDF Documents. They
may choose to overwrite the original or keep both versions.

47

Extensions The user may choose to integrate the Conformance Checker into an existing repository
system (for example Archivematica or DSpace).

The user may choose to supply a Report Template to transform the Machine-readable
Reports extracting significant properties for comparison.

Exceptions [see exceptions for the Conformance Checker components]

FS 2.5.1.7 Batch or periodical Conformance Checking

For any other use case, the user may want to process a batch of PDF Documents and/or run the
Conformance Checker at a set time (e.g. 28 February 2015) or at predefined intervals (e.g. weekly). The
PDF Documents may be accessed through a file system, web server (URL), EDRMS or repository system,
or API. The user may want to integrate the Conformance Checker into an external system which
coordinates the execution (‘pushing’ PDF Documents into the Conformance Checker) or they may want the
Conformance Checker to coordinate the execution (‘pulling’ PDF Documents from an external source by file
system location, URL, or API using identifiers).

Input PDF Document(s)
Policy Profile (optional)
Report Template (optional)

Output Machine-readable Report (containing any or all of PDF Features Report, Validation
Report, Policy Report, or Metadata Fixing Report)

Human-readable Report (containing any or all of PDF Features Report, Validation
Report, Policy Report, or Metadata Fixing Report)

Options The user may control the verbosity level in aggregated reports to produce a summary
of information across all PDF Documents in a batch.

Extensions The user may choose to integrate the Conformance Checker into a legacy system (see
FS 3.2 Integrations with other software).

Exceptions [see exceptions for the Conformance Checker components]

48

FS 3 Conformance Checker extensions

FS 3.1 Parsing PDF Documents and Embedded Resources

FS 3.1.1 Use cases

FS 3.1.1.1 PDF Parsers

As described in FS 2.1 veraPDF Implementation Checker the veraPDF Conformance Checker is reliant on
a PDF Parser to implement the PDF Validation Model, produce the PDF Document Extract, and generate a
PDF Features Report (which is itself required to generate other reports including Policy Reports).

Given the PREFORMA licensing requirements we will develop a greenfields PDF Parser from scratch, see
Annex E.4.1 Implementation Checker for a full discussion of our approach.

In addition, to demonstrate the modularity of our design we will collaborate with the PDFBox community to
provide a version of the Conformance Checker which swaps out our greenfield PDF Parser with the PDF
Parser provided by PDFBox. This will demonstrate that other PDF Parsers (including existing commercial
or proprietary solutions) can be used without affecting the functionality of the Implementation Checker and
other veraPDF components.

Note that this does not introduce a dependency on PDFBox - the Conformance Checker will still be
licensed in accordance with the PREFORMA requirements. Neither will this involve development effort by
veraPDF, the use of PDFBox will be handled under the provision of community support for adopters and
not involve development effort on the part of veraPDF Consortium members, both demonstrating the
technical design and the community engagement approach as described in CE 2.2.2 Other domains /
communities / standards.

Input Byte Sequence believed to be a PDF Document

Output PDF Document Extract

Embedded Resource(s)

Options None

Extensions The Implementation Checker produces a PDF Features Report from the PDF
Document Extract as described in FS 2.1.1.1 Generate a PDF Features Report.

The user may integrate an Embedded Resource Parser to process the Embedded
Resource and produce an Embedded Resource Report as described in FS 3.1.1.2
Embedded Resource Parsers.

Exceptions If the Byte Sequence cannot be identified as a PDF Document or is too malformed to
be parsed successfully then the Conformance Checker will report this as an error.

49

FS 3.1.1.2 Embedded Resource Parsers

A user wants to carry out detailed analysis of Embedded Resources within a PDF Document and obtain
more detailed information than that provided in a PDF Features Report. A developer integrates an
Embedded Resource Parser which can handle the appropriate formats. The user may create and provide a
Policy Profile that defines institutional policy for features of Embedded Resources.

Institutional policy relating to Embedded Resources include:

● images must be 300 dpi grayscale or a minimum of 400 pixels wide;
● images, fonts, or colour profiles must be valid according to the relevant standard;
● attachments must be in a certain format and contain certain metadata.

Input Embedded Resource extracted from the PDF Document

Output Embedded Resource Report

Options The user may create a Policy Profile which specifies Policy Checks to be applied to the
Embedded Resource Report by the Policy Checker.

Extensions Embedded Resource Parsers can be integrated for any conceivable type of Embedded
Resource as long as that they are compatible with the interaction interface defined in
TS 9 Integration with third-party tools.

Exceptions An Embedded Resource Parser could fail to parse an Embedded Resource or return
the information expected by the user. In this case the Conformance Checker will report
an error and not provide an Embedded Resource Report.

FS 3.1.2 Functional description

The PDF Parser parses a PDF Document and provides a PDF Document Extract to the Implementation
Checker (which uses it to generate a PDF Features Report) and extracts Embedded Resources (such as
images, fonts, colour profiles, and attachments) which may claim to be encoded in a format specified by
external standards (as described in FS 1.2.1 PDF/A requirements beyond PDF syntax) and passes them to
an Embedded Resource Parser (specialist parsers or validators for formats other than PDF/A).

Embedded Resource Parsers can be integrated using the interface defined in TS 9 Integration with third-
party tools. Note that this requires technical skills and is not part of the default behaviour of the
Conformance Checker. Integration of an Embedded Resource Parser registers the formats it can handle
with the Conformance Checker by Mime-type. The PDF Document Extract (and PDF Features Report)
identifies the Mime-type of Embedded Resources as described TS 4.2.4.5 Embedded files. If Embedded
Format Parsers are available to handle the identified formats then the Embedded Resources are passed to
an Embedded Resource Parser which returns an Embedded Resource Report which is available to the
Policy Checker.

Policy Profiles can include rules to check against the Embedded Format Report. In this way, additional
Policy Checks can be defined which cover detailed aspects of the Embedded Resources, such as their
conformance to external standards, which can be reported to the user in Policy Reports.

50

Note that in this context that the Conformance Checker is reliant on the quality of the Embedded Resource
Parser. No claims are made that using this mechanism will result in “definitive” validation as we define it for
PDF/A in the veraPDF Conformance Checker (specifically the Implementation Checker).

FS 3.1.3 Functional architecture

51

FS 3.2 Integrations with other software

The original veraPDF Tender Proposal, section 1.1 III Combinations with other software (pp. 12-13)
proposes integrations with Archivematica and DSpace. In addition to these integrations, which will still be
carried out, we are adding another tool - JHOVE - to the list.

FS 3.2.1 JHOVE

Since our proposal for Phase 1 was submitted, the Open Preservation Foundation has taken over
stewardship of JHOVE. The results of our Community Survey (due for publication in March 2015) will
demonstrate that JHOVE is amongst the most widely adopted digital preservation tools available today.

JHOVE provides a PDF module for validating PDF Documents which has known issues as identified at the
Open Preservation Foundation event Preserving PDF: Identify, Validate, Repair. veraPDF will carry out two
activities relating to JHOVE, aligning with our ongoing maintenance efforts:

● integrate the veraPDF Conformance Checker as a new module in JHOVE dedicated to PDF/A
Validation. This will immediately be available for the entire user-base of JHOVE;

● carry out a roadmapping exercise, aligned with the longer-term ambitions for veraPDF as a general
PDF Validator (as described in the original veraPDF Tender Proposal section II Potential of the
Proposed Idea/ Solution/ Technology to Address Future and/ or Wider Challenges in the Area) to
identify how the PDF module within JHOVE may be replaced. Note that this is a longer-term
ambition reliant on on-going stewardship of both JHOVE and veraPDF by the Open Preservation
Foundation and will not form part of the work funded by PREFORMA.

In additional to stand-alone use, JHOVE is also integrated into both Preservica and Rosetta (commercial
digital preservation systems). By integrating veraPDF into JHOVE the Conformance Checker will also be
made available to all customers and users of those systems.

http://jhove.sourceforge.net/
http://openpreservation.org/news/open-preservation-foundation-to-provide-sustainable-home-for-jhove/
http://openpreservation.org/news/open-preservation-foundation-to-provide-sustainable-home-for-jhove/
http://openpreservation.org/knowledge/surveys/community-surveys/
http://openpreservation.org/event/preserving-pdf-identify-validate-repair/
http://preservica.com/blog/the-latest-version-of-award-winning-technology-now-available/
http://www.exlibrisgroup.com/ru/files/Products/Preservation/RosettaDescription.pdf

52

FS 4 Interfaces
The veraPDF Shell provides several user interfaces to the Conformance Checker designed for users with
varying use cases or requirements and varying levels of expertise (from non-expert to expert).

Our approach to interface design will apply the principles and approaches of User Experience Design
(UXD) including:

● usability (based on persona profiles derived from the stakeholder analysis and user research as
described in CE 1 Stakeholders and CE 2.2 Specific communities);

● information architecture (based on the data available to the Conformance Checker as described in
TS 4 Machine-readable Report format, and TS 8 Report Template format);

● interaction design (including wireframe prototyping for graphical user interfaces);
● visual design (including branding, look and feel, graphics).

See also TS 8.2 Accessibility for a description of the accessibility standards which will apply to all Graphical
User Interfaces and Human-Readable Reports presented through the user interfaces.

FS 4.1 Standalone Distribution

A single-user installation intended for laptops, desktop PCs, and workstations which provides two Shell
interfaces. The distribution will be made available as software packages prepared for single click install on
Linux, Mac OSX, and Windows machines. The standalone distribution will package all dependencies
required for operation, even in a non-networked environment (see TS 1.7.3.1 Standalone for details).

FS 4.1.1 Command Line Interface (CLI)

The Command Line Interface provides access to all the functional components of the Conformance
Checker and allows the user to control them individually or separately. The expectation is that the
Command Line Interface will require familiarity with the principles and approaches of format validation,
metadata generation and transformation, and use of the terminal in their chosen operating system.

Examples of Command Line Interface usage are provided in FS 4.3 Command Line Interface examples.

Target audience Expert users, sysadmins, developers

Functional principles The full range of Conformance Checking functionality should be available.

FS 4.1.2 Desktop Graphical User Interface (GUI-D)

The Desktop GUI provides ‘point-and-click’ access to predefined sequences of operation of the
Conformance Checker components. For example to generate reports from a directory of files or apply
Policy Profiles obtained from the Policy Profile Registry. The Desktop GUI will enable the easy selection of
configuration options including PDF/A Flavours for Validation Profiles, Policy Profiles provided for common
policy requirements identified from the community, turning Metadata Fixing on or off, or outputting reports in
common formats using supplied Report Templates.

Target audience Non-expert users

Functional principles Simplified options should be available to provide quick access to commonly
used functionality through the loading of predefined configuration parameters
(e.g. input/output locations, Policy Profiles, Report Templates).

53

FS 4.2 Server Distribution

A server installation which will require some technical expertise to install and configure, typically that of a
sysadmin, which provides one Shell interface. The distribution will be made available as software packages
prepared for straightforward install on common server platforms including Debian/Ubuntu, Fedora, and
Suse. The server distribution will package all dependencies required for operation (see TS 1.7.3.3 World
Wide Web).

FS 4.2.1 Web Graphical User Interface (GUI-W)

The Web GUI is comparable in intent to the Desktop GUI but provided for use in a networked environment
where the user interacts with a website using a browser. As with the Desktop GUI, the Web GUI will enable
the easy selection of configuration options (see 4.1.2 Desktop Graphical User Interface). The Web GUI is
bult on the Web REST API (see TS 1.6.3.5 REST API).

Target audience Non-expert users

Functional principles Simplified options should be available to provide quick access to commonly
used functionality through the loading of predefined configuration parameters
(e.g. input/output locations, Policy Profiles, Report Templates).

FS 4.3 Command Line Interface examples

This section provides examples of using the Command Line Interface to operate the Conformance Checker
to meet selected use cases. Note that only a few examples are provided to illustrate the functionality. All
Command Line Interface parameters will be specified fully in technical documentation released with the
Conformance Checker.

FS 4.3.1 Implementation Checker and Metadata Fixer

This example shows how the Command Line Interface would be used to meet the following use cases:

● FS 2.1.1.1 Generate a PDF Features Report;
● FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour;
● FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document;
● FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

FS 4.3.1.1 Input

Input or configuration Description

PDF Document Memory, file, http(s), (s)ftp, Cloud

Validation Profile Profile that corresponds to a specific PDF/A Flavor

Option to fix metadata Allows modifications of the input PDF Document

Option to include PDF
Features Report in the
Machine-readable Report

Enables optional inclusion of the PDF Features Report

54

Input or configuration Description

Verbosity level of the PDF
Features Report

Defines which information should be included into the PDF
Features Report

NOTE: Report Templates defining fixed verbosity levels will be
provided, users may also supply their own.

Progress reporting The way to report the progress. In case of the API this is a
callback passed into validation classes.

Option to stop after N errors Allows interrupting the validation

Temp directory There is the default value, but custom temp folder may be
required because of a need to:

● provide a larger filesystem volume;
● conform to access restrictions.

FS 4.3.1.2 Output

Output Description

Repaired PDF Document Memory, file, http(s), (s)ftp

Machine-readable Report
(containing the PDF
Features Report, Validation
Report, and Metadata
Fixing Report)

Memory, file, API object

Progress reporting The progress is reported according to the corresponding input
parameter. For example, in case of veraPDF Command Line
Interface it may be converted to text output to stdout

Exit code OK or error code indicating that the software was not able to
complete the task

In case of an error code the error details may be logged
additionally to the standard output stream (English only).

55

FS 4.3.1.3 Parameters

Parameter Description

-validate (-file <filepath>|-url
<URL>)

[Required]

Tells CLI to perform validation and defines input PDF
Document

The parameter -file is followed by an absolute local or
UNC file path of the PDF to verify

The parameter -url is followed by a URL (in URI-encoded
form) that can be used to get the PDF Document to
validate. The schema (protocol) and all the additional
required information like server port, username, password
etc must be included into the URL. The following schemas
are supported: http/https/ftp/sftp and file (which means
local file)

-pdfa
(none|1a|1b|2a|2b|3a|3b|3u)

[Required]

Defines the PDF/A Flavor to be used to validate the input
PDF Document

The value none may be used to skip PDF/A Validation in
case only the PDF Features Report is required.

-fixmetadata [Optional]

If present tells the CLI to automatically fix (if possible) PDF
Metadata so that it is compliant with the requested PDF/A
Flavor. All the successful and unsuccessful fixes are
logged in the Metadata Fixing Report.

-verbosity [0-9|-file <filepath>] [Optional]

If present tells the CLI to add the PDF Features Report
(including PDF Metadata and all other XMP packages
available in the PDF Document) into the Machine-readable
Report generated according to -pdfa or -preflight option.
The combined report is handled as specified by the -
report parameter

The extra parameter defines verbosity level (i.e. which
information that should be included) of the PDF Features
Report. If the option is missing the default value “3” is
used.

The parameter -file is followed by an absolute local or
UNC file path of an alternative Report Template. The
Template can be used, for example, to fine-tune the
verbosity for specific aspects of the PDF Features Report
or transform to other formats.

56

Parameter Description

-progress (stdout|-file
<filepath>|-url <URL>)

[Optional]

Defines the destination for the progress reporting. If the
option is missing no progress is logged

The parameter stdout means the progress information will
be written to stdout in a way similar to the way used for -
file option

The parameter -file is followed by an absolute local or
UNC file path of a writable file. The CLI will append the
progress information at the end of this file. The file should
be seekable so a client software can open it in read-only
mode and periodically read the new progress information
from the end of this file. Each progress record is the
textual representation of an integer number from 0 to 100
indicating a percentage of the completion; each record is
written in a new line

The parameter -url is followed by a http/https URL (in URI-
encoded form) that can be used to send POST requests
containing the progress information

-stoperrors <number> [Optional]

Defines the number of failed Validation Checks after which
the process is interrupted. If this parameter is missing the
validation will be performed completely disregarding the
number of detected errors

The value must be an integer number greater than 0

-tempdir <folderpath> [Optional]

Defines the path to the temp folder that will be used by the
CLI to store temporary data. If this parameter is missing
the CLI will use the temp folder provided by Operating
System (normally current user temp folder)

The parameter -tempdir is followed by an absolute local
or UNC folder path that points to a writable folder on a
volume with enough space for CLI to proceed

NOTE: CLI will clean up all the temp files it creates but in
case of forcible termination some files may remain and
have to be cleaned up manually

57

Parameter Description

-output (-file <filepath>|-url
<URL>|inputpath) [Required if -fixmetadata option is used]

Defines output PDF stream

The parameter -file is followed by an absolute local or
UNC file path to a writable location that shall be used to
save the modified PDF. If there is no modifications made
the original PDF Document will be saved. If there is an
existing file at this location it will be overwritten. The output
path can be the same as was used for input

The parameter -url is followed by an URL (in URI-encoded
form) that can be used to upload the new PDF Document.
The schema (protocol) and all the additional required
information like server port, username, password etc must
be included into the URL. The following schemas are
supported: http/https/ftp/sftp and file (which means local
file)

The value inputpath can be used in case the input PDF is
provided via -file parameter and means the output PDF
Document shall overwrite the input PDF Document.

-report <filepath> [Required]

Defines the path to save the Machine-readable Report

The option -report is followed by an absolute local or UNC
file path to a writable location that shall be used to save
the report. If there is an existing file at this location it will
be overwritten

The report will include the Validation Report (if -pdfa is not
none), the PDF Features Report including all the
document metadata (if the parameter -details is used),
and the Metadata Fixing Report (if the parameter -
fixmetadata is used)

FS 4.3.1.4 Invocation

verapdf -validate -file C:\test.pdf -pdfa 1a -fixmetadata -verbosity 9 -
progress stdout -stoperrors 1 -tempdir C:\Temp -output -file C:\test_fixed.pdf
-report C:\test_report.xml

This is the command to execute CLI(program with the name verapdf) validation for the input file test.pdf,
validate on PDF/A-1 level a with automatic metadata fixing. In addition to performing regular PDF/A
validation CLI will also report PDF Features with the verbosity level 9. The progress will be reported in
console (stdout). The validation must stop as soon as at least 1 error is encountered. The temp folder is
C:\Temp. The new PDF will be saved into the file test_fixed.pdf, the Report into the file test_report.xml.

verapdf -validate -url https://verapdf.com/pdfs/test.pdf -pdfa 1b -progress -
url https://verapdf.com/progressreporter/ -output -url
ftp://verapdf.com/verifiedpdfs/test_fixed.pdf -report C:\test_report.xml

In this example the input file is defined by a URL, as well as the modified file and the destination for

https://verapdfa.com/pdfs/test.pdf
https://verapdfa.com/progressreporter/
http://verapdfa.com/verifiedpdfs/test_fixed.pdf

58

progress reporting.

FS 4.3.2 Policy Checker

This example shows how the Command Line Interface would be used to meet the following use cases:

● FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements;
● FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)

FS 4.3.2.1 Input

Input Description

PDF Features Report Memory, file, API object

Policy Profile Memory, file, API object

FS 4.3.2.2 Output

Output Description

Machine-readable Report (containing
the Policy Report)

Memory, file

Exit code OK or error code indicating that the software was
not able to complete the task

In case of an error code the error details may be
logged additionally

FS 4.3.2.3 Parameters

Parameter Description

-check <filepath> [Required]

Tells CLI to perform Policy Checks and defines input PDF Features
Report

The parameter -check is followed by an absolute local or UNC file path
of the Machine-readable Report containing the PDF Features Report

-profile <filepath> [Required]

Defines the Policy Profile

The parameter -profile is followed by an absolute local or UNC file
path of the Policy Profile to be used for Policy Checking

-report <filepath> [Required]

Defines the path to save the resulting Policy Report

The parameter -report is followed by an absolute local or UNC file path
to a writable location that shall be used to save the Report. If there is
an existing file at this location it will be overwritten.

59

FS 4.3.2.4 Invocation

verapdf -check C:\pdffeatures_report.xml -profile C:\policy_profile.xml -report
C:\policy_report.xml

This is the command to perform Policy Checks using the input Machine-readable PDF Features Report
pdfdetails_report.xml. The Policy is defined by the Policy Profile policy_profile.xml. The resulting Policy
Report will be saved to policy_report.xml.

FS 4.3.3 Reporter scenarios

This example shows how the Command Line Interface would be used to meet the following use case:

● FS 2.4.1.2 Obtain a Human-readable Report (PDF Features, Validation, Policy)

FS 4.3.3.1 Input

Input or configuration Description

Machine-readable Report (any type) Memory, file, API object

Report Template The template to generate HTML or PDF Human-
readable Report

Locale information The Language Pack for the resulting Human-
readable Report

FS 4.3.3.2 Output

Output Description

Human-readable Report Memory, file, HTTP response stream

Exit code OK or error code indicating that the software was
not able to complete the task

In case of an error code the error details may be
logged additionally

FS 4.3.3.3 Parameters

Parameter Description

-convert <filepath> [Required]

Tells CLI to convert Machine-readable Report
<filepath> into a Human-readable Report

The parameter -convert is followed by an absolute
local or UNC file path of a Machine-readable
Report

60

Parameter Description

-template <filepath> [Required]

Defines the Report Template for Human-readable
Report generation

The parameter -template is followed by an
absolute local or UNC file path of the Template to
be used for conversion

-language <language-code> [Optional]

Defines the language to be used for the resulting
Report

The parameter -language is followed by a
language code that is defined as the combination:
<primary-code>-<subcode>

<primary-code> - two-letter code reserved for
language abbreviations (ISO639)
<subcode> - two-letter subcode that is a country
code (ISO3166)

Examples: en-US, de-DE

If the option is missing the default language ‘en-US’
is used

-report <path> [Required]

Defines the path to save the resulting Human-
readable Report

The parameter -report is followed by an absolute
local or UNC file or folder path to a writable location
that shall be used to save the Report. If there is an
existing file/folder at this location it will be
overwritten.

The folder path is expected in case of HTML
Report Template with the option to keep all the
resources (CSS, JS, images) as external files

FS 4.3.3.4 Invocation

verapdf -convert C:\validation_report.xml -template C:\template.xslt -language
de-DE -report C:\report.html

This is the command to convert the input Machine-readable Validation Report validation_report.xml to a
Human-readable Report report.html. The Template is defined by the template.xslt and the Report language
is German.

http://www.w3.org/TR/html4/references.html#ref-ISO639
http://www.w3.org/TR/html4/references.html#ref-ISO639

61

Technical Specification and Software Architecture
Supporting the Functional Specification, the Technical Specification defines the veraPDF Conformance
Checker software, including the architecture and design, validation model, Validation and Policy Profile
formats, Machine-readable Report format, Report Template format, integration with third-party tools, test
framework, and internationalisation.

TS Summary of technologies

TS 1 Architecture and Design

TS 1.1 Design Principles

TS 1.1.1 Simplicity

TS 1.1.2 Modularity

TS 1.1.3 Reliability

TS 1.1.4 UML Diagramming Conventions

TS 1.2 Top level architecture

TS 1.3 Conformance Checker API

TS 1.4 Domain Model

TS 1.4.1 Primitive Types & ByteSequence Entities

TS 1.4.2 Resource Entity, Representations, and Metadata

TS 1.5 API Definition

TS 1.5.1 Service Interfaces

TS 1.6 veraPDF Framework

TS 1.6.1 Conformance Checker API

TS 1.6.2 Framework Core

TS 1.6.3 ByteSequence & Resource Helpers

TS 1.6.4 Shell Services

TS 1.6.5 REST API

TS 1.7 veraPDF Conformance Checker

TS 1.7.1 ByteSequences and Resources

TS 1.7.2 Conformance Checker components

TS 1.7.3 Physical Architecture

TS 2 Validation Model

TS 2.1 Validation Model overview

TS 2.2 Terminology

TS 2.3 PDF Types Hierarchy

TS 2.3.1 Core types

TS 2.3.2 Cos types

62

TS 2.3.3 PD types

TS 2.3.4 Graphics operators model

TS 2.3.5 External specifications

TS 2.4 Object Properties

TS 2.4.1 Examples of Properties

TS 2.5 Association Graph

TS 2.5.1 Examples of Association Links

TS 2.5.2 Validation Context

TS 2.6 Validation Rules

TS 2.6.1 Examples of Validation Rules

TS 2.6.2 Inheritance of Rules

TS 2.6.3 Caching Check results

TS 2.7 Integration with third-party tools

TS 2.8 Validation algorithm

TS 2.9 The formal syntax for the Validation Model

TS 3 Validation Profile format

TS 3.1 Profile overview

TS 3.1.1 XML namespace and schema

TS 3.1.2 Text messages

TS 3.2 Profile structure

TS 3.2.1 Rules

TS 3.3 Profile example

TS 4 Machine-readable Report format

TS 4.1 Report overview

TS 4.1.1 XML namespace and schema

TS 4.1.2 Paths and URLs

TS 4.1.3 Text messages

TS 4.2 Report structure

TS 4.2.1 documentInfo

TS 4.2.2 processingInfo

TS 4.2.3 validationInfo

TS 4.2.4 pdfFeatures

TS 4.3 Report example

TS 5 Policy Profile

TS 5.1 Schematron overview

63

TS 5.2 Using Schematron for Policy Checks

TS 5.2.1 Policy requirement examples

TS 6 Test framework

TS 6.1 Terms and Definitions

TS 6.2 Test corpora

TS 6.2.1 Unit test files

TS 6.2.2 Validator test corpora

TS 6.2.3 Metadata Fixer test corpus

TS 6.2.4 Policy test corpus

TS 6.2.5 PREFORMA test corpus

TS 6.3 Referenced files

TS 6.4 Automation

TS 6.4.1 Unit testing

TS 6.4.2 Continuous integration

TS 6.4.3 Virtualised build/test environment

TS 7 Internationalization

TS 7.1 Overview

TS 7.2 Architecture

TS 7.3 veraPDF TMX format details

TS 7.3.1 TMX format overview

TS 7.3.2 Implementation

TS 7.3.3 Tools

TS 7.3.4 Additional locale information

TS 8 Report Template format

TS 8.1 Overview

TS 8.2 Accessibility

TS 9 Integration with third-party tools

TS 9.1 Overview

TS 9.1.1 Command Line Interface

TS 9.1.2 API Interface

64

TS Summary of technologies
The veraPDF Conformance Checker will be built in Java.

Other technologies used are summarised in this table.

Technology Application

PDF reading, checking, modifying, writing, generation based on a template

XML used for Machine-readable Reports, Policy Profiles

JSON used as alternative machine readable form for web services and the like

XSLT,XPath used in Policy Profiles and Human-readable Reports generation

XSL-FO Human-readable PDF Reports generation

HTML, CSS, JS Human-readable HTML Reports generation

XMP, XMP location path reading, checking, modifying, writing

HTTP/HTTPS with REST input/output PDF, progress reporting

FTP/SFTP/FTPS input/output PDF

Fonts checking embedded font programs in PDF

Image formats JPEG, JPEG2000, TIFF, PNG etc (checking image resources in PDF)

ICC profiles checking embedded ICC profiles in PDF

IPC inter-process communication for the case of communication with an
external executable such as a third-party plug-in image validation

TMX for multi-language support in Human-readable Reports

Java internationalization for shell messages and the like

Schematron for expressing Policy restrictions

65

TS 1 Architecture and Design
This section describes the architecture and design of the veraPDF Conformance Checker. First the overall
design principles are outlined, then an overview of the architecture and a domain model are presented. The
remainder of the section gives details of the Java projects that make up the Conformance Checker.

TS 1.1 Design Principles

The architecture and design have been developed with three guiding principles in mind, simplicity,
modularity, reliability, and use of open standards.

TS 1.1.1 Simplicity

The design has been kept as simple as possible. In general, measures of software reliability and
maintainability decrease as a system’s complexity increases. It's easier to specify the behaviour of small
single-responsibility classes unambiguously, making them straightforward to implement. This also facilitates
the development of unit tests, which benefit from clear specifications. Small, reliable classes provide the
building blocks for complex behaviours and systems.

TS 1.1.2 Modularity

The design makes every effort to separate concerns so that modules perform logically discrete, well
defined functions. Modules are designed to be independent and, where appropriate, interchangeable
providing opportunities for reuse instead of repetition.

The architecture presented separates the Conformance Checker into three top-level modules which are
then divided into packages and finally interface/class definitions. There are simple, clearly stated
dependencies at each level of the design.

TS 1.1.3 Reliability

The Conformance Checker is intended for use by stakeholders with an interest in PDF reliability: memory
institutions looking to safeguard the long term accessibility of digital material and PDF vendors looking to
provide robust PDF editing software. We aim to provide these organisations with components that can be
trusted to perform reliably in the long term. These aspirations are at odds with complex software that tries
to provide diverse functionality.

Instead we’ve chosen to design simple, modular components that have deliberately limited functionality and
need know as little about their external environment as possible. This aspires to the highest principles of
software design best practice, valuing predictability and reliability over complexity.

TS 1.1.4 UML Diagramming Conventions

There are four stereotypes that are used with specific meaning in our UML diagrams. Our use is consistent
with conventional use but that’s not always well defined. UML is a flexible modelling framework applicable
to Object Oriented Languages in general. These languages have their own idioms which inevitably make
their way into a model. The first two definitions address code organisation and are straightforward:

● <<module>> represents a physical modules of logically or functionally related code. For a Maven
built Java project such as ours these are equivalent to Maven Projects and their aggregated Maven
Modules;

● <<package>> this has a specific Java meaning, where a package is collection of classes and
interfaces organised by namespaces to prevent name clashes. Modules are composed of Java
packages as well as other artefacts.

66

The other definitions are a specific to a view of the proposed system. We’ve divided the classes/objects into
two types:

● <<entities>> entity classes model the information handled by the system, including Configuration,
Validation and Policy Profiles, Reports and Report Templates;

● <<interface>> an interface defines a cohesive set of behaviours.

TS 1.2 Top level architecture

The veraPDF Conformance Checker design is divided into 3 top level modules:

● veraPDF Library : Java library that provides definitive Implementation Checking (PDF/A Validation
and PDF Features Reporting) and Metadata Fixing for PDF Documents. The veraPDF library is
designed for easy, adaptable access to PDF/A Validation, for use by developers and memory
institutions with a deep interest in PDF;

● veraPDF Framework : Java library providing a definition and reference implementation of the
Conformance Checker API, and a light framework to support developers implementing a
Conformance Checker;

● veraPDF Conformance Checker : veraPDF implementation of a Conformance Checker combining
functionality of the veraPDF Library with implementation of the veraPDF Framework.

These modules and their dependencies are shown below:

The veraPDF Conformance Checker can be compared to the tip of an iceberg. Although it sits at the top of
the pile and delivers all of the working software it's really a thin wrapper around the APIs and functionality of
the underlying veraPDF Library and veraPDF Framework. PDF-specific functionality will be added to the
veraPDF Library while generic functionality will be implemented in the veraPDF Framework.

TS 1.3 Conformance Checker API

The Conformance Checker API is an abstract module that is defined independently of any implementation
language. The veraPDF Framework is a Java realisation of this abstract module. This module describes the
domain data types and entities operated on by the Conformance Checker components, i.e. Implementation
Checker, Policy Checker, Metadata Fixer, Reporter, and Shell. The API is presented as an abstract UML
model and is deliberately agnostic to:

● file formats checked, as assumed knowledge of specific format details could prevent interoperability
between various conformance checker implementations;

● implementation, as using language specific constructs and data types hinders programmers
developing conformance checkers in other languages; and

● deployment, thereby enabling deployment in the challenge brief scenarios and enhancing
interoperability.

67

TS 1.4 Domain Model

The domain model comprises the main entities and interfaces. The model is presented in a series of UML
diagrams, starting with low level entities which are, in turn, used to construct the Conformance Checker
API.

TS 1.4.1 Primitive Types & ByteSequence Entities

TS 1.4.1.1 Primitive Types

The domain model defines three primitives beyond those commonly shared between language agnostic
models (i.e. String, integer, etc.), they are HexSHA1, MediaType, and URI.

These types share three useful properties:

● they can be fully represented as a String value that’s parsable according to an open standard;
● most development languages offer native libraries that support them, e.g. data types or functions to

parse and use them;
● they each provide a well defined, standards-based identifier.

The three primitive types are described in the table below:

Primitive Type Description

HexSHA1 The hexadecimal String representation of a SHA1 hash value. This is ALWAYS a
string of EXACTLY 40 characters the form of which can be checked using the
regex:

/^[0-9a-fA-F]{40}$/

The HexSHA1 value is useful as it uniquely identifies any Byte Sequence, within
the probabilities of hash collisions. The value of it is deterministically derived from
the contents of a specific Byte Sequence using an open, standard algorithm. By
reading a Byte Sequence once you can verify that it’s identical to any Byte
Sequence that bears the same id. This means ANYONE can reliably create and
compare the ids of Byte Sequences using an open standard.

MediaType A Media Type is a string value the form of which is described in the Internet Media
Type (MIME) RFC http://tools.ietf.org/html/rfc4288, see also
http://tools.ietf.org/html/rfc2045, and http://tools.ietf.org/html/rfc2046. These
underpin content type negotiation on the WWW and are used to indicate the type or
format of a Byte Sequence, e.g. application/pdf.

http://tools.ietf.org/html/rfc4288
http://tools.ietf.org/html/rfc2045
http://tools.ietf.org/html/rfc2046

68

Primitive Type Description

URI A Uniform Resource Identifier as defined by RFC 2396: Uniform Resource
Identifiers (URI): Generic Syntax. URIs provide resolvable identifiers that can be
used to look up and obtain a particular resource either directly or indirectly through
resolvers.

TS 1.4.1.2 ByteSequence

Refers unambiguously to a particular Byte Sequence and is an abstraction with only four properties.

Name Type Description

id HexSHA1 The SHA1 hash value of the byte sequence which is its unique
ID.

length Integer A whole number always where

length >= 0

This is obviously derived from the Byte Sequence by counting
the number bytes. Used to let potential consumers know the
size of the resource before reading.

mediaType MediaType This value is simply a possibly informed opinion at a point in
time and not a deterministically derived or permanent property
of the Byte Sequence.

locations ByteSequenceLocation
[0..*]

0 or more locations each of which provides an indication as to
where a copy of the ByteSequence can be retrieved or written.

The reader of the ByteSequence is responsible for re-
calculating the SHA-1 value if they wish to guarantee the
integrity of the read process.

The ByteSequence type has a simple default value for an empty document, expressed as XML it will be:

<byteSequence id=”da39a3ee5e6b4b0d3255bfef95601890afd80709” length=”0”
mediaType=”application/octet-stream”><locations></locations></byteSequence>

in JSON:

{
 "byteSequence": {
 "-id": "da39a3ee5e6b4b0d3255bfef95601890afd80709",
 "-length": "0",
 "-mediaType": "application/octet-stream"
 }
}

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc2396.txt

69

TS 1.4.1.3 ByteSequenceLocation

Refers unambiguously to a particular Byte Sequence and is an abstraction with only four properties.

Name Type Description

method String
A String value indicating HTTP method to use, indicates
whether the resource is retrievable (GET), writable (POST,
PUT), or to be removed (DELETE).

Any location with an empty method string will be treated as a
GET (read) location.

URI location
A URI that provides either a URL or a resolvable URN that can
be used to retrieve, write, or delete the ByteSequence.

A ByteSequence for a particular PDF Document will be:

{
"byteSequence": {
 "-id": "c433ee5e6b4b0d3255bfef95601890afd807094",
 "-length": "0",
 "-mediaType": "application/pdf",
 "locations": {
 "byteSequenceLocation": {
 "-method": "GET",
 "-reference": "http://verapdf.org/somefile.pdf"
 },
 "byteSequenceLocation": {
 "-method": "GET",
 "-reference": "file://localhost/home/username/somefile.pdf"
 }
 }
 }
}

To summarise, a ByteSequence is a Byte Sequence with built in identification and validation. A consumer
knows the length of the object BEFORE they read it. It also has an indication of its type and a list of
locations defining where it can be read and/or written.

70

TS 1.4.2 Resource Entity, Representations, and Metadata

A Resource is a new entity with important relationships. A Resource has the following attributes.

TS 1.4.2.1 Resource

Name Type Description

resourceId HexSHA1 The id of the Resource, this is generated from one of it’s
representations (explained shortly).

representations ByteSequence
[1..*]

1 or more ByteSequence that represent the Resource,
there should ALWAYS be a Resource that matches the
documentID, i.e. the same hash. Other entries are
alternative representations of the Resource, the type of a
representation is indicated by the ByteSequence
MediaType. This is the identical Representation used in
the term Representational State Transfer, i.e. RESTful
Web Services.

metadataId HexSHA1 The SHA-1 id of derived from one of the
metadataRepresentations that could be considered a
starting point for a Resource processor. This is only a
convenience attribute and can be ignored by
implementers. This is indicated by providing the empty
hash string.

metadataRepresentations ByteSequence[
0..*]

0 or more ByteSequences that represent metadata, i.e
data about the Resource.

71

TS 1.5 API Definition

This section defines the Conformance Checker API as a set of service interfaces. These interfaces do not
correspond to the functional components that make up the Conformance Checker. Instead they define a set
of interface behaviours that are flexible enough to implement them.

TS 1.5.1 Service Interfaces

The last elements of the Conformance Checker API are the service interfaces. At this level they do not
have typed names that resemble the names of the Conformance Checker components. In describing the
interfaces we show the relationships between them.

There are only three service interfaces: SingleStateService is a base interface which
EnumeratedStateService and VariableStateService inherit from. Inheritance is an object-oriented construct
but these interfaces could be implemented easily in a non object-oriented environment.

TS 1.5.1.1 SingleStateService

A single state service is designed to describe itself and perform a single, pre-defined function. The interface
methods are:

Method Description

getServiceId(): URI This method takes no parameters and returns a unique URI that identifies
the service. The URI can simply be used as a unique identifier, it doesn’t
have to be a resolvable location.

getDescription(): Resource Another getter method with no parameters, this method returns a
Resource that describes the service. The contents of the describing
resource are up to the implementer. Development prototypes might return
a Resource with some simple or non-existent descriptive information.
A production ready, trusted service might contain a full description of the
service, references to external standards documents that describe the
service operation and a full change history of the service itself.

processResource(
 toProcess: Resource [1..*]
): Resource

This method invokes the service operation on a set of Resources. The
service should process a supplied representation of the Resource, e.g. a
PDF Document, and add any results as either a metadata representation
or representation held within the returned Resource.

This single state service is designed to perform one, self contained operation reliably. This could be
calculating the SHA-1 hash of a Resource, or validating a PDF Document against a single PDF/A Flavour.

72

The limited options also limit the complexity of the service, which means it’s easier to implement a reliable
service, this reliability comes at the expense of flexibility.

TS 1.5.1.2 EnumeratedStateService

An EnumerateStateService is a specialisation of the SingleStateService designed to provide additional
flexibility. It effectively allows the implementer to combine related SingleStateServices into a single service
allowing the user to choose between them. In addition to those defined by it’s parent interface an
EnumeratedStateService offers the following methods:

Method Description

getServiceOptions(): URI[1..*] Returns a set of URIs that identify the options offered by the service.
This allows a caller to establish the legal set of options supported by
the service.

getDefaultOption(): URI[1] Returns a single URI that identifies the service’s default option, i.e. if no
option is supplied by the caller the service will substitute the default
option.

processResource(
 toProcess: Resource [1..*],
 option: URI[1]
): Resource

This method invokes a service operation on a set of Resources.It
differs from the processResource method of the SingleStateService in
that it allows the user to supply a URI identifier that effectively chooses
a processing option.

These services are more flexible than SingleStateServices. An example would be a service that supports
three SHA hash algorithms, e.g. SHA1, SHA256, and SHA512. This service would offer three URI
identifiers for its options, e.g.

● http://www.w3.org/2000/09/xmldsig#sha1
● http://www.w3.org/2000/09/xmldsig#sha256
● http://www.w3.org/2000/09/xmldsig#sha512

A different implementation might provide PDF/A Validation against an enumerated set of PDF/A Flavours
and would thereby provide the functionality of the veraPDF Implementation Checker.

These services are more flexible than the SingleStateService but they are also more complex with a choice
of execution paths.

TS 1.5.1.3 VariableStateService

VariableStateService is the most flexible service interface, allowing the user to pass an additional Resource
alongside those to be processed. In the context of the veraPDF Conformance Checker this additional
Resource might be a Policy Profile or a Report Template.

The single method is:

Method Description

processResource(
 toProcess: Resource [1..*],
 toApply: Resource[1]
): Resource

This method invokes a service operation on a set of Resources.The
method requires an additional Resource supplied by the user that is
used during processing.

The process is user-configurable and provides greater flexibility than the other service interfaces. While
useful, the additional flexibility has implications for reliability and the ability of the implementer to reproduce

73

issues with the services operation as the execution of the service now depends on externally supplied input
beyond the control of the implementer.

TS 1.6 veraPDF Framework

The entities and interfaces described in the domain model are deliberately abstract. This section describes
a Java Framework that implements the API and provides a reference implementation of Conformance
Checker components.

The veraPDF Framework is a Maven project divided into three sub-modules:

● Conformance Checker API : containing the domain model entities and service interfaces as Java
interface definitions only. The interfaces are extended to provide further specialisations that model
Conformance Checker components and types;

● Framework Core : provides implementations of the primitive data types, entities, and service
interfaces. These are provided as concrete classes for data types, entities, and helper utilities with
abstract classes providing defined points for extensibility, such as writing data to third party
systems. This module also includes reference implementations of two general purpose components
capable of:

○ making assertions about the presence or absence of patterns in XML trees (the Schematron
Checker);

○ transforming XML documents into other XML documents, or other formats such as HTML,
plain text, or XSL-DO (the Generic Reporter);

● Shell Services : provides reference implementations of Conformance Checker Shell services for
the identification, storage, and retrieval of Byte Sequences and Resources.

The remainder of this section presents the different Java modules that make up the veraPDF Framework
with descriptions of the key classes and interfaces.

TS 1.6.1 Conformance Checker API

A lightweight module that contains the Java interface definitions for entities and services from the domain
model. These Java interfaces specify contracts for the behaviour of the classes that implement them. Their
purpose is to allow an entirely greenfield implementation of the veraPDF Shell API without using the rest of
the framework.

Interface based design

The API module is an example of a modular, Java Interface based design. This provides separation
between the specification of behaviour and any implementation. The Framework Core module provides
reference versions of Java classes that implement these interfaces. A developer could choose to write their
own classes that implement these interfaces. These can be passed to any method that uses the Interface
type rather than the implementation class.

Domain Model Types

The URI and MediaType primitives are provided by the JDK/JRE. URI is part of the Java networking library
and MediaType is provided by the JAX-WS API so no type definitions are needed.

The HexSHA1 interface is defined with a single getValue() method that returns the hex String
representation of the SHA1 hash. The entities and service interfaces are identical to those in the domain
model with name changes that obey Java getter conventions for each of the properties described. We’ll
show these interfaces them when we cover the reference framework classes that implement them.

74

TS 1.6.2 Framework Core

Framework Core also contains reference implementations of these interface as concrete or abstract
classes. Concrete classes are provided for the entity types and utilities Abstract classes are provided as
extensibility points for integration with third party systems such as repositories and databases.

Not all classes are shown in detail. Main classes are shown but less functional classes, such as wrappers
around collections of other data, are omitted (for example ComponentDetails which encapsulates the
properties that uniquely identify a Component such as version number).

Use of Immutable Objects

Interfaces will not provide methods that can alter the state of an object after instantiation whenever
possible. Mutable objects (i.e. exceptions to this approach) will be documented in code providing a
justification for the decision. There are several motivations behind this practice:

● immutable objects are simpler to construct, test and use;
● truly immutable objects are always thread-safe;
● identity mutability is avoided;
● immutable objects have failure atomicity built in.

These properties of immutable objects support scalability and data integrity. Access to a mutable object
from separate threads necessitates locking, reducing throughput and making code more difficult to
maintain. Immutable objects eliminate this problem as their state cannot be changed so many threads can
access a particular instance. Unchanging state provides data integrity as object instances and their
properties cannot be accidentally altered.

Favour composition over inheritance

Inheritance and polymorphism are often misused to create brittle class structures. Inheritance is intended to
represent an "is type of" relationship but is often used to represent a "contains a" relationship, which is
actually composition. Inheritance is only used when it leads to a simpler or more elegant design. Abstract
base types will be delivered to provide common behaviour for some standard types but developers are not
required to use them. Developers may implement interface behaviour as they see fit.

75

TS 1.6.2.1 Implementation Checker

AbstractImplementationChecker provides reusable base class attributes and methods that deal with
concerns common to all components such as id and description. This means that a developer extending
the class does not have to implement the code and all components share a common implementation for
these general concerns. The abstract class also provides conversion between types and methods for the
Implementation Checker specialisation, Validation Report and checkResources, and the Resource type and
EnumeratedStateService from the domain model. This allows the Java implementations to benefit from full
type safety while still supporting the simple serialisable entities from the model.

The Implementation Checker interface also adds convenience methods for processing a single resource
without the need to create a List with a single element. A developer extending the class must implement a
checkResource method that provides a particular Implementation Check, for example PDF/A Validation.

TS 1.6.2.2 Metadata Fixer

AbstractMetadataFixer provides similar support to that described for the Implementation Checker. Indeed
the class shares its implementation of common component functionality with the Implementation Checker.
Developers wishing to produce their own Metadata Fixer may concentrate on format and implementation
specifics.

76

TS 1.6.2.3 Policy Checker

The Framework provides an Abstract Policy Checker similar to the components described previously. It
also provides a generic Policy Checker implementation that applies a Policy Profile expressed as
Schematron to a Resource that is expected to be an XML tree. The class can be used as provided for
Schematron based checking, the only requirements are the availability of user defined Schematron Policy
Profiles.

77

TS 1.6.2.4 Reporter

The Framework also provides a generic Reporter implementation as well as an abstract base class. The
XSLT Reporter implements the Reporter interface and implements the formatReport and formatReports
methods. This Reporter uses the supplied ReportTemplate as an XSLT transform and applies it to the
passed MachineReadableReports which should be in XML format for compatibility with XSLT.

TS 1.6.3 ByteSequence & Resource Helpers

The Framework provides implementations of the ByteSequence and Resource types. Static factory
methods to create ByteSequences and Resources from files, URLs, and InputStreams are provided to help
developers create and work with these classes.

The Framework also provides ByteSequenceReader and ByteSequenceWriter interfaces. These interfaces
can be implemented by developers wishing to integrate a Conformance Checker with an external system.

78

TS 1.6.3.1 ByteSequenceReaders

The Framework provides three reference ByteSequenceReader implementations:

● a file based reader that uses Java’s native file I/O package;
● a URI reader based on Java’s native networking package;
● a cache reader thats backed by memory for local caching.

Readers could be developed to read content and metadata from relational and document based databases,
or repositories.

TS 1.6.3.2 ByteSequenceWriters

The Framework provides two reference ByteSequenceWriter implementations:

● a file based writer that uses Java’s native file I/O package; and
● a cache writers thats backed by memory for local caching.

There is no standard for writing to a URL via HTTP, it takes place via a particular web service
implementation. Writers can be developed that allow a Conformance Checker to write content or metadata
to external systems.

79

TS 1.6.4 Shell Services

A small set of utility services that provide core Shell functionality for use in Shell implementations.

TS 1.6.4.1 Identifier Service

The Identifier Service is a specialisation of a SingleStateService. The service performs only one task: given
File, Stream, or URL access to an unknown ByteSequence the service determines its SHA1 digest and
returns a HexSHA1 String. The service can also be used as a hash checker if the SHA1 value is already
known.

TS 1.6.4.2 Caching and Storage Services

The Framework provides reference caching and persistence services. These are all based upon a Cache
generic interface and class that are enhanced by combining caches. The abstract Cache class can handle
all types derived from a Resource, this includes specialisations such as Report Templates and Policy
Profiles. Simple Cache types aren’t persistent and lose their contents when the JVM terminates, they use
either the temp directory or can use memory for performance. Persistent Stores are file backed and retain
their state between executions.

80

TS 1.6.4.3 Scheduling Service

The Scheduling Service is an “always on” service that dispatches sequential, pre-configured component
invocations that operate on a pre-defined set of Resources. The implementation is simple, a single thread
sorts a set of tasks with the earliest on top. The thread then sleeps until the next task, but is also reawoken
by the submission of a new task. Simple periodic repetition is supported, daily, weekly, monthly and
annually.

TS 1.6.5 REST API

The veraPDF Conformance Checker Components will be deployable as REST web services. Note that
REST APIs are not the same as programmatic, language dependent APIs. The REST web service
mediates between requests received over HTTP and the underlying APIs and returns outputs from the APIs
again over HTTP. This is illustrated using an example of an edited code snippet which defines a REST
interface for the Identifier Service.

import javax.ws.rs.Consumes;
import javax.ws.rs.GET;
import javax.ws.rs.POST;
import javax.ws.rs.Path;
import javax.ws.rs.Produces;
import javax.ws.rs.core.MediaType;

/**
 * REST resource definition for a ByteSequence identification service.
 * these are JAX-WS REST services and the annotations perform the magic of
 * handling content types and serialisation.
 *
 * @author Carl Wilson.</p>
 */
@Path("/identifier")
public class IdentifierResource {
 /**
 * @param uploadedInputStream
 * InputStream for the uploaded ByteSequence
 * @param contentDispositionHeader
 * extra info about the uploaded ByteSequence.
 * @return the {@link org.openpreservation.verapdf.HexSHA1} of
 * the uploaded byte sequence serialised according to requested
 * content type.
 */
 @POST
 @Consumes(MediaType.MULTIPART_FORM_DATA)
 @Produces({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML,
 MediaType.TEXT_XML })
 public HexSHA1 getHexSha1(
 @FormDataParam("file") final InputStream uploadedInputStream,

81

 @FormDataParam("file") final FormDataContentDisposition
contentDispositionHeader) {
 try {
 HexSHA1 id = ByteSequences.idFromStream(uploadedInputStream);
 uploadedInputStream.close();
 return id;// return
 } catch (IOException e) {
 // transfer fails, output exception and return empty stream id
 e.printStackTrace();
 }
 return ByteSequences.nullByteSequenceId();
 }

 /**
 * @return the {@link org.openpreservation.verapdf.HexSHA1} of
 * an empty (0 byte) byte stream serialised according to

* requested content type.
 */
 @GET
 @Path("/null")
 @Produces({ MediaType.APPLICATION_JSON, MediaType.APPLICATION_XML,
 MediaType.TEXT_XML })
 public HexSHA1 getEmptySha1() {
 return ByteSequences.nullByteSequenceId();
 }
}

The example uses the standard JAX-WS annotations to provide a REST endpoint:

● @Path defines the path of the resource, the URL location. These are normally stated relative to a
master path provided by the web application. In this case we state that all services in this class are
found at @Path(“/identifier”). If the containing web application provided a root path of
http://verapdf.org/services then the identifier service endpoint would be
http://verapdf.org/services/identifier.

● @POST / @GET defines the type of HTTP request that a particular method responds to. A single
endpoint can service multiple request types.

● @Consumes indicates the type of content that an endpoint accepts. The getHexSha1() method in
the example above declares @Consumes(MediaType.MULTIPART_FORM_DATA). This is a
MediaType (MIME Type) for multipart form data, a standard method of streaming binaries to a
service.

● @Produces is used to advertise the type of content the service is capable of producing, in this case
XML and JSON for both methods.

The web service supplies two endpoints:

● .../identifier allows a caller to POST (upload) a binary stream and returns the hex string value of the
hash. If there’s a problem reading the file it returns the SHA1 hash of a null or empty stream. The
caller can request that the service returns the digest value as either XML or JSON.

● .../identifier/null takes no parameter and simply returns the known constant for null stream SHA1
hash.

While interoperability between Conformance Checkers for different formats is out of scope during Phase 1
this REST web service design could provide an integration point for providing multiple Implementation
Checkers behind a single endpoint and using content type negotiation to pass a submitted Resource to an
Implementation Checker which can handle it.

http://verapdf.org/services/identifier

82

For example, if a user passes a Resource using the application/pdf mediatype then the veraPDF
Implementation Checker would be selected. Passing a Resource using the image/tiff mediatype would
indicate that a TIFF Implementation Checker is required.

TS 1.7 veraPDF Conformance Checker

The veraPDF Conformance Checker module brings together definitive PDF/A Validation and Metadata
Fixing from the veraPDF Library with the veraPDF Framework to deliver a fully functional Conformance
Checker. This section gives a technical overview of how the Library and Framework are assembled.

TS 1.7.1 ByteSequences and Resources

The utilities provided by the Framework do not require additional coding to:

● create ByteStreams and Resources from PDF Documents as long they are available on a file
system, a resolvable URI, or an open input stream;

● provide identifiers and data integrity through hash checking (as SHA1 support is built-in);
● persist ByteSequences and Resources (as caching and storage services are provided).

TS 1.7.2 Conformance Checker components

Conformance Checker components provide PDF-specific functionality.

TS 1.7.2.1 Implementation Checker

The abstract class provided by the Framework provides built in functionality to transform the incoming sets
of Resources to individual ByteSequences to be checked. The implementer has the responsibility to:

● assign a URI identifier to their particular implementation and pass it to the abstract base class;
● assign a URI identifier to each of the enumerated service options (for PDF/A Validation this gives

one URI for each PDF/A Flavour);
● write documentation to describe the service and include it as a Resource packaged in the

components Java Archive (jar) file;
● populate the AbstractImplementationChecker internal URI options array, which will then return the

available options if getServiceOptions() is called (the developer can select a default option, if they
do not provide one the base class will automatically select one);

● ensure that the Validation Profile corresponding to a particular PDF/A Flavour is also selectable via
the option URIs;

● call the veraPDF Library validation functionality, passing the PDF Document from the Resource and
transforming the returned data for insertion into the returned Resource as metadata; and

● handle and report any exceptions thrown by the veraPDF Library, for example parse errors that
occur when the passed Resource is not a PDF Document.

Note that the developer may give the class they derive from the abstract class any name they choose,
within the constraints of Java syntax. The veraPDF derived class will be called
VeraPdfImplementationChecker, but it can also be used as its interface type ImplementationChecker.

TS 1.7.2.2 Metadata Fixer

The implementer has similar responsibilities to those defined for the Implementation Checker. The
developer must wrap the underlying veraPDF Library behind the MetadataFixer interface using the
AbstractMetadataFixer base class. If the implemented Metadata Fixer is only required to write Repaired
PDF Documents to a file system or local cache then the provided writer classes will suffice. Writing
Repaired PDF Documents to external databases or systems would mean implementing a suitable
ByteSequenceWriter.

83

TS 1.7.2.3 Policy Checker

The veraPDF Policy Checker uses Schematron Checks for properties in a PDF Feature Report via XPath,
the XML query standard that underpins Schematron. The Framework provides a fully functional
Schematron checker implementation so in this case no new classes or code are required. The developer is
still responsible for providing a meaningful URI identifier for the new Policy Checker and other provenance
information such as version numbering.

The developer must create and provide Policy Profiles capable of being applied to the PDF Features
Report or Embedded Resource Report, as the Schematron checker is file format agnostic.

TS 1.7.2.4 Reporter

The veraPDF Reporter is simply an XSLT transforming service and is identical in function to the
XsltReporterRef class. Beyond selecting an identifying URL and providing a service description a developer
can simply use the XSLT reporter out of the box.

The developer must create and provide Report Templates to transform the format-specific data contained
in Reports generated by the other components.

TS 1.7.3 Physical Architecture

In this section we consider the deployment scenarios presented in the PREFORMA Challenge Brief. We
describe the features of our architecture and design that support each of the scenarios.

TS 1.7.3.1 Standalone

The veraPDF Conformance Checker components are designed to be deployable in standalone
environments without access to network resources, including the Internet.

Each of the veraPDF components comes packaged with a rich Resource that:

● describes the function of the component;
● provides links to documents that cannot be included due to IPR (e.g. ISO specifications);
● includes provenance details of the component (e.g. details of the veraPDF consortium or a release

changelog).

The Implementation Checker contains a tested and approved Validation Profile for each of the PDF/A
Flavours it supports as a packaged resource in the Java archive (jar) file. The Metadata Fixer will
encapsulate all supported fixes which can be performed without access to network resources.

The Shell is capable of storing user defined documents (Policy Profiles and Report Templates) and
retrieving them from local disk storage using the provided storage services. It is possible that user defined
Policy Profiles or Report Templates might access external resources (e.g. additional XML schema
documents) that are beyond the knowledge or control of the implementer.

TS 1.7.3.2 Networked

Network deployment has built in support for networked file and URL resources through the supplied
ByteSequence Readers and Writers, as described in TS 1.6.3.1 ByteSequenceReaders and TS 1.6.3.2
ByteSequenceWriters.

TS 1.7.3.3 World Wide Web

The REST API described in TS 1.6.3.5 REST API enables the deployment of the Components as web
services. Deployment of the Java web service interfaces requires a standard Java servlet container. These
could be deployed behind the same reverse-proxy server as the PREFORMA website, i.e. Apache or nginx
web servers or on a different server, possibly at another URL.

84

Regardless of where the component services are hosted the PREFORMA website can provide a user
interface that calls the service endpoint through a browser based client page written in HTML and
Javascript. This could be a bespoke page in keeping with any design including the PREFORMA look and
feel or a dedicated visual design provided by veraPDF.

TS 1.7.3.4 Legacy Systems

Integration into legacy systems requires the availability of a Java Virtual Machine within the legacy
environment (i.e. hardware and operating system which supports it). If a JVM is available then the
Conformance Checker can be deployed and executed alongside the legacy system. The APIs provide the
integration points and Report Templates provide the mechanism for performing data conversions to formats
compatible with the legacy system.

As described in the original veraPDF proposal and expanded upon in FS 3.2 Integrations with other
software veraPDF will deliver integrations with Archivematica, DSpace, and JHOVE both to demonstrate
the mechanism for integration with legacy systems which have different functional goals and to make the
Conformance Checker available to users of those systems.

In the case where a legacy system runs on old or unusual hardware or an operating system that does not
support a JVM direct integration is not possible. Instead, integration would rely on the development of a
bespoke ResourceReader and/or ResourceWriter. The nature of any integration in this context would
depend on specific detailed requirements for interoperability.

TS 1.7.3.5 DIRECT Evaluation Framework

The explanation of the DIRECT infrastructure provided by PREFORMA (suppliers’ meeting 11/02/2015)
describes the transfer of structured information, consistent with a pre-defined ontology, between a
Conformance Checker and the evaluation framework (as opposed to the deployment of the Conformance
Checker within the DIRECT operational environment). veraPDF will supply a Report Template that defines
the transformation of our test results and performance metrics into the DIRECT ontology for use by the
Reporter. The transformed data will be transferred to DIRECT via its submission interface.

TS 1.7.3.6 Scalability

Scalability of the Conformance Checker is addressed by making extra hardware resources available to the
Conformance Checker. There are two vectors governing System scalability:

● vertical scaling: the process of adding resources to a server or desktop workstation (e.g. extra
memory or a faster CPU);

● horizontal scaling: spreading the processing load across multiple CPU cores or machines.

Vertical scaling is the only solution for single threaded applications but high performance servers are
extremely expensive, reflecting the high cost of single die, multi-core processors and high density memory
chips. Horizontal scaling is generally more practical and affordable as commodity hardware provides more
"bang per buck" in terms of computation power for the price. In order to allow horizontal scaling an
application must be multi threaded, i.e. capable of running concurrently on multiple CPU cores or servers.
See the results of the SCAPE project for more information about scalability in a cultural heritage context.
During Phase 2 the Open Preservation Foundation will explore the possibility of using SCAPE technology
under its stewardship to demonstrate the scalability of the Conformance Checker.

Objects that have been designed and tested with concurrent execution in mind are known as "thread-safe",
meaning they're accessible by multiple threads simultaneously without clashes between threads. The
immutable Conformance Checker classes and objects are designed with thread safety in mind (see TS
1.6.2 Use of Immutable Objects) which means that the veraPDF Conformance Checker can be deployed
for horizontal scaling.

http://openpreservation.org/about/projects/scape/

85

TS 2 Validation Model
The Validation Model responds to the basic research questions of PREFORMA: “how to interpret and
implement standard specifications” and “how to determine whether a file is what it claims to be.” The model
describes a generalised approach to file format validation which we apply to PDF/A specifically.

TS 2.1 Validation Model overview

The PDF Validation Mode is strongly motivated by Adobe Systems’ DVA model and whenever possible
incorporates its basic building blocks. However, it is not so tightly linked to the PDF dictionary structure and
defines the Validation Rules in a more general context suitable for defining Validation Profiles for other
types of data structures. In particular, it may as well be used for validating ICC profiles, font programs and
other additional specifications referenced by the PDF standard as described in FS 1 PDF/A validation in
context.

We define the Validation Model based on the following concepts:

● Object-oriented approach. A tree-like hierarchy of object types that defines all possible types of
objects we can check during PDF validation, their properties and inheritance rules.

● Graph of associations. The oriented graph of objects defines both the iteration rules and the list of
checks per each object. Each edge in this graph may have additional marks, for example, specifying
the number of objects of target type (0 or 1, 0 or more, 1 or more).

● List of checks per each object type. The checks themselves are defined as a single validation
condition and an error/warning/info message it may result it. They follow the inheritance rules for the
object types.

● Validation conditions syntax. A validation condition is a Boolean expression involving any object
properties, global variables (see below), standard string and arithmetic expressions, and Boolean
operators.

● Variables. There is a global storage of named variables accessible to all checks. Such global
variables can be used in validation conditions (for example, the profile may include conditions for
minimal/maximal page dimensions given as such variables). They can be also used to store
intermediate values (calculated while performing some previous checks) relevant for further checks.

The above general principles of the Validation Model are technology agnostic and are not linked to any
specific implementation framework and even to any serialization language.

TS 2.2 Terminology

Term Definition

Document Source file subject to certain specification for its internal format

Object A logical piece of data within a given Document having certain
Properties and Associated Objects

Object Type A class of Objects with an identical set of Properties and Association
Links.

Validation Rule A condition imposed to all Objects of a certain Object Type

https://www.google.by/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=0CCwQtwIwAg&url=http%3A%2F%2Fwww.youtube.com%2Fwatch%3Fv%3D-K_yBHw3C0U&ei=wEPHVI3pHaL9ygPqtoKYDw&usg=AFQjCNFq-t1r8zH_65rx3vdKKTAnMQfByw&sig2=U_SlhaQKmIdh0SLpWVfkBw

86

Term Definition

Check An act of verifying a given Validation Rule for a specific Object

Inheritance A way to define a common set of Properties, Validation Rules and
Association Links for classes of different Object Type

Inheritance Tree A tree formed by all Object Types as nodes with oriented edges
corresponding to their Inheritance

Object Property A named property evaluated to one of the basic types such as
boolean, integer, decimal, string

Associated Objects Other objects related to a given Object according to the Document
format

Association Link A named link specifying that there is one or several Objects of Type
A associated with all Objects of Type B

Objects Graph A graph formed by all Object Types as nodes and all Association
Links as oriented edges

TS 2.3 PDF Types Hierarchy

The Validation Model describes all Object Types, their Properties and their Inheritance information required
to perform all checks of the given validation profile. Note that the object model does not need to cover all
objects described in the PDF Specification.

This Validation Model is used for specifying the PDF Objects Hierarchy. If the validating tool does not
support any of the Object Types or Association Links between them as specified in the Objects Graph the
validation process is reported as failed. If the validating tool does not support any of the Object Properties
used within the Rule, the corresponding check is reported as failed, but the overall validation process may
continue.

All types form the tree with the type Object as a root. In other words, all types are inherited from Object,
and each type except for Object has a unique parent type (i.e., there is no multiple inheritance). Below we
list a sample model used for PDF/A validation. The complete PDF Types Hierarchy will be documented
during Phase 2 and included into software documentation.

TS 2.3.1 Core types

Object -> CosObject, PDObject, Operator, External

TS 2.3.2 Cos types

CosObject->CosDocument, CosNull, CosBool, CosNumber (-> CosReal, CosInteger),
CosName, CosString, CosDict (->CosStream, CosFileDescriptor, CosTrailer),
CosArray

87

TS 2.3.3 PD types

PDObject->PDDocument, PDPage, PDResourceDict, PDResource, PDAnnot, PDAcroForm,
PDAction, PDCMap, PDMetadata, PDGroup, PDOutputIntent*, PDAttachment

PDResource->PDFont, PDXObject, PDColorSpace, PDExtGState, PDPattern, PDShading,
PDProperty

PDFont->PDType3Font, PDTrueTypeFont, PDType1Font

PDXObject->PDXForm, PDXImage

PDPattern->PDTilingPattern, PDShadingPattern

PDColorSpace->PDDeviceRGB, PDDeviceCMYK, PDDeviceGray, PDICCBased (-
>PDICCBasedGray, PDICCBasedRGB, PDICCBasedCMYK, PDICCBasedLab), PDLab,
PDCalGray, PDCalRGB, PDSeparation, PDDeviceN

TS 2.3.4 Graphics operators model

Below we list all operators from ISO-32000:1 specification. Not all of them are required for the PDF/A
validation.

Operator->OpGeneralGS, OpSpecialGS,OpPathConstruction,OpPathPaint, OpClip,
OpTextObject, OpTextState, OpTextPosition,OpTextShow, OpType3Font, OpColor,
OpShading, OpInlineImage, OpXObject, OpMarkedContent, OpCompatibility

OpGeneralGS->Op_w, Op_J, Op_j, Op_M, Op_d, Op_ri, Op_i, Op_gs

OpSpecialGS->Op_q, Op_Q, Op_cm

OpPathConstruction->Op_m, Op_l, Op_c, Op_v, Op_y, Op_h, Op_re

OpPathPaint->Op_s, Op_S, Op_f, Op_F, Op_f*, Op_B, Op_B*, Op_b, Op_b*, Op_n

OpClip->Op_W, Op_W*

OpTextObject->Op_ET, Op_BT

OpTextState->Op_Tc, Op_Tw, Op_Tz, Op_TL, Op_Tf, Op_Tr, Op_Ts

OpTextPosition->Op_Td, Op_TD, Op_Tm, Op_T*

OpTextShow->Op_Tj, Op_TJ, Op_', Op_"

OpType3Font->Op_d0, Op_d1

Op_Color->Op_CS, Op_cs, Op_SC, Op_SCN, Op_sc, Op_scn, Op_G, Op_g, Op_RG, Op_rg,
Op_K, Op_k

OpShading->Op_sh

OpInlineImage->Op_BI, Op_ID, Op_EI

OpXObject->Op_Do

OpMarkedContent->Op_MP, Op_DP, Op_BMC, Op_BDC, Op_EMC

OpCompatibility->Op_BX, Op_EX

TS 2.3.5 External specifications

External->FontProgram, ICCProfile, CMapFile, ImageFile, XMPPackage,
EmbeddedFile, Certificate

FontProgram ->Type1FontProgram, CFFFontProgram, TrueTypeFontProgram,

88

OpenTypeFontProgram, CIDType0FontProgram, CIDType2FontProgram

ImageFile->JPEG2000, JPEG, JBig2, CCITT

TS 2.4 Object Properties

Each Object Type has a predefined list of Properties inheritable through the Types Hierarchy. Each
property has one of the simple types such as Boolean, String, Integer, Decimal and may have a
predefined value null meaning the property is not defined.

In case the object has an underlying PDF Dictionary structure and the property corresponds to a certain
PDF key it shall use the key value as a name. However, the objects may have properties not directly linked
to the PDF Dictionary structure. Evaluating such properties might involve complex logic, such as, for
example, low level PDF/A requirements on PDF Document. A typical example would be a PDF/A clause
that the PDF Document has a special binary header as a second line in the file. In the example below it is
reflected via a special Boolean property binaryHeaderCompliesPDFA of the CosDocument object type.

TS 2.4.1 Examples of Properties
Object:

type : String
CosDocument:

nrIndirectObjects : Integer
binaryHeaderCompliesPDFA: Boolean

PDDocument:
 nrPages : Integer
 PDXImage:

Width : Integer
Height : Integer
BitsPerComponent : Integer
Interpolate : Boolean

 ICCProfile:
deviceClass : String
colorSpace : String

89

A part of the above PDF Types Hierarchy is illustrated on the image below:

90

TS 2.5 Association Graph

Association Graph is an oriented marked graph where each node has one of the object types defined in the
Types Hierarchy. The marks on the edge include:

● The name used for navigation through the graph. This name is identical to the PDF key if the object
has underlying PDF Dictionary structure.

● The qualifier specifying the number min/max objects of the target objects. We commonly use ? (0 or
1), * (0 or more), + (1 or more) characters as shortcuts for this qualifier.

All edges starting at a given node form an ordered list that defines the validation order for the target nodes.

TS 2.5.1 Examples of Association Links

In this section, we list sample Association Links of the PDF Association Graph. The complete Association
Graph will be specified during Phase 2 and included into software documentation.

CosDocument->CosObject+, PDDocument
PDDocument->PDAcroForm*, PDPage+, PDFormField*, PDMetadata, PDOutputIntent
Op_Do -> PDXObject
Op_Tf -> PDFont
Op_BDC -> PDProperty
Op_EI -> PDImage
PDImage -> PDColorSpace
CosDict -> PDMetadata?
PDICCBased->ICCProfile

TS 2.5.2 Validation Context

During validation process Objects of the same Object Type can be reached via different sequence of
Association Links, or, in other words, via different graph paths. We call such path the Validation Context.
It plays an important role and may be used to determine some Object Properties, which have special
inheritance rules in PDF.

A typical example would be resource names not defined explicitly in the resource dictionary and defined via
parent objects.

We always assume that the evaluation of Object Properties and all Checks take this Validation Context as
one of the input data.

TS 2.6 Validation Rules

Each Validation Rule contains:

● Metadata: the unique ID, the description, reference(s) to the PDF/A specifications or other
documents, severity (error, warning, info).

● The test condition evaluated to a boolean value. This test condition may refer to any Properties of
the current Object, the values of global variables and may use the standard set of arithmetic, string,
boolean operations

● The message template that can be inserted into this message. The template may use expressions
%1, …, %9 as placeholders for the strings defined via expressions below

● Up to 9 expressions evaluated to string values and used for the message template placeholders
● Additional expressions used to set new values of global variable

91

TS 2.6.1 Examples of Validation Rules

Below we show examples of several Validation Rules described in a natural language. These rules are
combined into the Validation Profile using the XML syntax. (See TS 3 Validation Profile format.)

Object type: CosDocument
Description: checks if the second line is a comment starting with 4 binary
characters
Reference: PDF/A-1 spec, 6.1.2 */
Test condition: binaryHeaderCompliesPDFA;
Message template: Missing binary comment after the file header

Object type: CosString
Description: the string is in Hex format and contains even number of raw bytes
(before decoding)
Reference: PDF/A-1 spec, 6.1.6
Test condition: isHexFormat && rawLength % 2 = 0;
Message template: The hex string contains odd number of characters

Object type: CosInteger
Description: implementation limit
Reference: PDF/A-2 spec, 6.1.13
Test condition: value <= 2147483647 && value >= -2147483648
Message template: The integer exceeds implementation limits

Object type: PDDocument
Description: optional content is not allowed
Reference: PDF/A-1 spec, 6.1.13
Test condition: OCProperties == null
Report message: The document catalog dictionary contains /OCProperties key

TS 2.6.2 Inheritance of Rules

If the Rules is defined for a base Object Type, it also applies to all Objects with the derived type. In such
case, all Checks of the base Object Type should be performed prior to the Checks for the derived Type.

TS 2.6.3 Caching Check results

In most cases the same Object does not need to be checked more than once, even if it was reached via a
different Validation Context.

However, there are cases when some Object Properties and, as a result, the related Checks depend on the
Validation Context. A typical example would be validating the content of the Form XObject, which uses the
resources not explicitly defined in the Form XObject resource dictionary.

So, any implementation of this Validation Model should property detect such cases and repeat the Check
for the same Object only if the check does depend on the Validation Context. This would avoid entering into
infinite loops during the validation process.

92

NOTE: There exist pathological cases in which, for example, the form object refers to itself via its
name in the page resource dictionary. Proper implementation of the Validation Model should detect
such cases, report an error and avoid infinite loops.

TS 2.7 Integration with third-party tools

A third-party tool may register Validation Rules for each Object Type. Whenever an Object of this Object
Type is encountered, it is passed to the third-party tool for custom validation.

It is important to note that all such third-party checks shall still provide all required metadata and message
template, so that the validation result can be embedded into the PDF Validation Report. However, they do
not influence the final resolution, whether the document is compliant with a given validation profile.

TS 2.8 Validation algorithm

The above model uniquely defines the validation algorithm:

1. Start with a predefined root object (CosDocument)
2. Perform all Checks associated with its Object Type and with all Object Types it is derived from (eg.,

if the Object has type CosStream, then all checks for CosDict are also applied)
3. Retrieve all Objects associated with the current Object via all Association Links and perform step 2

for them.
4. Use smart caching mechanism to avoid checking the same Object twice.
5. Stop when there are no more Objects to check.

NOTE. The order of all Checks is uniquely defined by the model and the validation profile. In
particular, the reports generated by different implementations have to be identical.

TS 2.9 The formal syntax for the Validation Model

The Validation Model is serialized into a collection of text files following a custom veraPDF syntax
resembling (but not identical) to an object-oriented programming language. It is defined in Wirth syntax
notation as follows:

MODEL = (IMPORT)* (ENTITY)*
IMPORT = “import” QUALIFIED_NAME “;”
ENTITY = (COMMENT)* “type” QUALIFIED_NAME (“extends” SUPERTYPE)? “{”

(ATTRIBUTE)* “;”
ATTRIBUTE = PROPERTY | LINK
PROPERTY = (COMMENT)* “property” QUALIFIED_NAME “:” TYPE “;”
TYPE = “String” | “Integer” | “Decimal” | “Boolean”
LINK = (COMMENT)* “link” QUALIFIED_NAME “:” QUALIFIED_NAME ANY “;”
ANY = “?” | “+” | “*”
QUALIFIED_NAME = letter (letter | digit)*
COMMENT = “%” (character)*

Example

import org.verapdf.model.baselayer.Object;
import org.verapdf.model.pdlayer.PDDocument;

% Parent type for all basic PDF objects
type CosObject extends Object {
}

% Low-level PDF Document object
type CosDocument extends CosObject {

http://en.wikipedia.org/wiki/Wirth_syntax_notation
http://en.wikipedia.org/wiki/Wirth_syntax_notation

93

 % Number of indirect objects in the document
 property nrIndirects: Integer;
 % Size of the byte sequence representing the document
 property size: Integer;
 % trailer dictionary
 link trailer: CosTrailer;
 % all indirect objects referred from the xref table
 link indirectObjects: CosIndirect+;

% true if the second line of the document is a comment with at
% least 4 symbols in the code range 128-255 as required by
% PDF/A standard

 property binaryHeaderCompliesPDFA: Boolean;
 % link to the high-level PDF Document structure
 link document: PDDocument;
}

% PDF Indirect object
type CosIndirect extends CosObject {
 % the direct contents of the indirect object
 link directObject: CosObject;
 % true if the words obj and endobj are surrounded by the

% correct spacings accoring to PDF/A standard
 property spacingCompliesPDFA: Boolean;
}

% PDF Dict type
type CosDict extends CosObject {
 % number of key/value pairs in the dictionary
 property size: Integer;
 % all keys of the dictionary
 link keys: CosName*;
 % all values of the dictonary
 link values: CosObject*;
 % XMP metadata if it is present
 link metadata: PDMetadata?;
}

94

TS 3 Validation Profile format
The Validation Profile describes the Validation Checks which shall be applied during PDF/A Validation. Also
it describes Metadata Fixes which may be performed in order to make the Document compliant with a
Validation Check.

TS 3.1 Profile overview

The Profile strongly relies on the particular Validation Model that is described on the previous chapter. The
Validation Model is expressed using a syntax described in TS 2.9 The formal syntax for the Validation
Model. For different PDF/A Flavors veraPDF software may use slightly different Validation Models. So the
Profile must have a reference to the specific Validation Model via the Model ID.

The Validation Profile format is XML.

TS 3.1.1 XML namespace and schema

The Profile namespace is defined by URI 'http://www.verapdf.org/ValidationProfile’.

The preferred prefix is ‘vvp’ (that is ‘veraPDF Validation Profile’).

The XML format supports Unicode so the Profile is able to contain any Unicode data. The Validation Profile
normally uses UTF-8 encoding. The used encoding is anyway specified in the XML header.

TS 3.1.2 Text messages

All the text messages in the Profile are specified by string IDs which can be used to find the exact text for
the message in a Language Pack.

TS 3.2 Profile structure

The Profile root element is profile. It contains the attribute model that provides the ID of the Validation
Model this Profile was created for.

Example

<profile xmlns="http://www.verapdf.org/ValidationProfile"
model="org.verapdf.model.PDFA1a">
...
</profile>

The children of the root element are described in the table below

Element name Presence Description

name once The name of the Profile

description once The description of the Profile

creator once The creator of the Profile

created once The datetime when the Profile was created

hash once The SHA-1 hash code of the Profile

NOTE: the hash is used to identify the Profile and it is
generated based on the Profile Rules definition

http://www.verapdf.org/ValidationProfile

95

Element name Presence Description

imports once Imports of other Validation Profiles

rules once Definitions of all the Validation Rules to be applied during
validation

Example
<profile>

<name>PDF/A-1a validation profile</name>
<description>STR_ID_101</description>
<creator>User1</creator>
<created>2015-01-23T17:30:15Z</created>
<hash>...</hash>
<imports>
...
</imports>
<rules>

<rule id="rule1">...</rule>
<rule id="rule2">...</rule>
...

</rules>
</profile>

TS 3.2.1 Rules

The element contains a list of child rule elements, each providing a definition of a specific Validation Rule.

Each rule element contains the attributes id and object. The object attribute is important for the validation
algorithm as it allows identifying the validation model object to which the given Rule shall be applied.

Example
<rule id="rule1" object="CosDocument">
...
</rule>
<rule id="rule35" object="PDXObject">
...
</rule>
<rule id="rule112" object="PDAnnot">
...
</rule>

A definition of a Rule includes:

● description of the Rule
● test condition that is expressed according to the Validation Model
● error (or warning) message (optionally with arguments) that is issued if the condition is evaluated to

false
● reference to the relevant specification and its clause
● optionally descriptions of the related Metadata Fixes

NOTE: arguments may use the objects and their properties from the Validation Model to give more
details about the problem

96

Element name Presence Description

description once The ID of the textual description of the Rule. The ID is later
used for TMX localization

Description example: “The % character of the file header
shall occur at byte offset 0 of the file.”

test once The test condition expressed according to the Validation
Model

Example: "fileHeaderOffset == 0"

error
or
warning

once The information that is added to the Machine-readable
Report in case the test condition is evaluated to false

This includes message and optionally arguments. The
message is defined by its ID so it can be later used for TMX
localization.

Error message example: "Offset of the % character of the file
header is %1 (note: value -1 means the file header is not
found)."
Argument: "fileHeaderOffset"

reference once The reference to the relevant specification and its clause.

This element contains two children elements:
specification - the specification name for which this rule was
created
clause - the number of the relevant clause in the
specification

fix none or
more

The description of the Metadata Fix that may happen when
applying this Rule

Example 1

The Rule for the CosDocument object.

<rule id="rule1" object="CosDocument">
<description>STR_ID_401</description>
<test>fileHeaderOffset == 0</test>
<error>

<message>STR_ID_402</message>
<!--actual offset is the argument for the message-->
<argument>fileHeaderOffset</argument>

</error>
<reference>

<specification>ISO19005-1</specification>
<clause>6.1.2</clause>

</reference>
</rule>

97

In TMX file:

● STR_ID_401 is defined as the text: "The % character of the file header shall occur at byte offset 0 of
the file."

● STR_ID_402 is defined as the text: "Offset of the % character of the file header is %1 (note: value -
1 means the file header is not found)."

Example 2

The Rule for the PDAnnot object.

<rule id="rule112" object="PDAnnot">
<description>STR_ID_570</description>
<test>(F != null) && (F_PrintFlag == 1) && (F_HiddenFlag == 0)
&& (F_InvisibleFlag == 0) && (F_NoViewFlag == 0)</test>
<error>

<message>STR_ID_571</message>
<!--actual flags values are the arguments for the message-->
<argument>F_PrintFlag</argument>
<argument>F_HiddenFlag</argument>
<argument>F_InvisibleFlag</argument>
<argument>F_NoViewFlag</argument>

</error>
<reference>

<specification>ISO19005-1</specification>
<clause>6.5.3</clause>

</reference>
</rule>

In TMX file:

● STR_ID_570 is defined as the text: "An annotation dictionary shall contain the F key. The F key’s
Print flag bit shall be set to 1 and its Hidden, Invisible and NoView flag bits shall be set to 0."

● STR_ID_571 is defined as the text: "The F key in the annotation dictionary is not conforming: key is
not present or its flags are not as required. Actual flags values: Print = %1, Hidden = %2, Invisible =
%3, NoView = %4."

TS 3.2.1.1 Fix

The element provides a description of a Metadata Fix that can be performed when applying a rule. The
applicable Metadata Fixes are a part of the Validation Model implementation. The description of a Fix
consists of the elements in the table below.

Element name Presence Description

description once The ID of the textual string that represents the description
of the fix

info

once The message to be added into the Machine-readable
Report in case the fix succeeded

The element contains the child element message that is
used to specify the ID of the actual message

98

Element name Presence Description

error once The message to be added into the Machine-readable
Report in case the fix failed

The element contains the child element message that is
used to specify the ID of the actual message

Example
<rule id="rule53" object="PDMetadata">

<description>STR_ID_608</description>
<test>isInfoDictConsistent</test>
<error>

<message>STR_ID_609</message>
</error>
<reference>

<specification>ISO19005-1</specification>
<clause>6.7.3</clause>

</reference>
<fix id="fix1">

<description>STR_ID_893</description>
<!--the message in case the fix succeeded-->
<info>

<message>STR_ID_894</message>
</info>
<!--the message in case the fix failed-->
<error>

<message>STR_ID_895</message>
</error>

</fix>
</rule>

TS 3.3 Profile example
The self-documented example of the Validation Profile prototype: ProfileExample.xml

https://raw.githubusercontent.com/verapdf/verapdf.github.io/master/examples/phase1/ValidationProfileExample.xml

99

TS 4 Machine-readable Report format

TS 4.1 Report overview

The validation results are stored in the Machine-readable Report that is the XML file.

The Machine-readable Report may contain the following sections:

● general Document information
● processing information
● PDF Features Report
● PDF Validation Report
● Policy Report

The PDF Features Report contains the general information about the PDF Document, the description of the
Document pages and resources. The amount of the information is controlled by a requested verbosity level
(see FS 2.1.1.1 Generate a PDF Features Report). The PDF Features Report also contains all the XMP
metadata packets in the original form. The PDF Features Report may also contain an Embedded Resource
Report produced by an Embedded Resource Parser as described in FS 3.1.1.2 Embedded Resource
Parsers.

The PDF Validation Report lists all the performed Checks and indicates those which revealed the violations
of the PDF/A specification or other specifications it refers to (see FS 2.1.1.2 Check the conformance of a
PDF Document to a PDF/A Flavour). The PDF/A Validation Report also contains the description of the
performed Metadata Fixes (successful and failed) as described in FS 2.2 veraPDF Metadata Fixer.

The Policy Report provides the results of the performed Policy Checks (see FS 2.3.1.1 Check the
conformance of a PDF Document to institutional policy requirements).

TS 4.1.1 XML namespace and schema

The Report namespace is defined by URI 'http://www.verapdf.org/MachineReadableReport'.

The preferred prefix is ‘vmrr’ (that is ‘veraPDF Machine-Readable Report).

The XML format supports Unicode so the generated Report is able to contain any Unicode data. The
Machine-readable Report normally uses UTF-8 encoding. The used encoding is anyway specified in the
XML header.

TS 4.1.2 Paths and URLs

The Report may contain file system paths. The paths are absolute and in platform-independent format
which means the symbol ‘/’ is used as separator.

The Report may contain URIs. The URIs are URI-encoded.

TS 4.1.3 Text messages

All the text messages in the Report are specified by string IDs which can be used to find the exact text for
the message in a Language Pack.

TS 4.2 Report structure

The Report root element is report. It contains attributes creationDateTime and processingTime which
provide the time when Report was created and the time spent on the PDF Document processing
respectively.

http://www.verapdf.org/VeraPDFMachineReadableReport

100

The children of the root element are described in the table below

Element name Presence Description

documentInfo once General information about the verified PDF Document

processingInfo once Environment, configuration information, and
performance metrics for the performed Document
validation task.

validationInfo none or
once

Information about the performed PDF/A Validation

pdfFeatures none or
once

PDF Document description including document, pages
and resources details, metadata

This element is present only if the PDF Features Report
generation was requested

policyCheckingInfo none or
once

Information about the performed Policy Checks

NOTE: in case the Machine-readable Report is Policy Report instead of the validationInfo and
pdfFeatures elements there is the element policyCheckingInfo that provides the information about
the performed Policy Checks. The exact content of this element will be specified during the Phase
2.

Example

<report creationDateTime="2014-12-07T13:20:06.419+03:00" processingTime="00:00:02.319">
<documentInfo>...</documentInfo>
<processingInfo>...</processingInfo>
<validationInfo>...</validationInfo>
<pdfFeatures>...</pdfFeatures>

</report>

The sub-clauses below explain each element in more details.

TS 4.2.1 documentInfo

The children of the element provide the basic information about the processed PDF Document. The names
of the elements:

● fileName
● filePath
● size
● title
● author
● subject
● keywords
● creator
● producer
● creationDate
● modificationDate
● pdfVersion

101

● numOfPages
● maxPageSize
● tagged
● linearized
● encrypted
● trapped
● language
● hash

Example

<documentInfo>
<fileName>Test.pdf</fileName>
<filePath>C:/Users/User/AppData/Local/Temp/Test.pdf</filePath>
<size>1024000</size>
<title>The document title</title>
<author>The document author</author>
<subject>The document subject</subject>
<keywords>keyword1, keyword2</keywords>
<creator>The document creator</creator>
<producer>The document producer</producer>
<creationDate>2014-11-23T15:41:28.018</creationDate>
<modificationDate>2014-11-30T21:08:11.397</modificationDate>
<pdfVersion>1.5</pdfVersion>
<numOfPages>2</numOfPages>
<maxPageSize width="210.001652" height="296.999959" unit="mm"/>
<tagged>false</tagged>
<linearized>true</linearized>
<encrypted>true</encrypted>
<trapped>unknown</trapped>
<language>unknown</language>
<hash>sha-1 hash code of the PDF document</hash>

</documentInfo>

NOTE: more details about the page boxes (Media/Crop/Trim/Bleed/Art boxes) as well as rotation
and scaling factor for each page specifically can be found in PDF Features Report section.

NOTE: more details about the encryption and restrictions in PDF Features Report section.

TS 4.2.2 processingInfo

The children of the element are described in the table below

Element name Presence Description

installationConfig once Information about the software and the environment

taskConfig once Configuration configuration settings controlling software
behaviour, these are reusable across executions and
installations

executionConfig once Configuration settings unique to a particular validation
task

102

Element name Presence Description

processMetrics once Provides information about the time taken to complete
the task.

TS 4.2.2.1 installationConfig

The children of the element provide the basic information about the software and the environment. The
names of the elements:

● libraryVersion
● shellVersion
● javaVersion
● operatingSystem
● userName
● hostName
● tempDir
● homeDir

Example

<installationConfig>
<libraryVersion>1.0.2</libraryVersion>
<shellVersion>2.0</shellVersion>
<javaVersion>1.7.0_75</javaVersion>
<operatingSystem>Microsoft Windows Service Pack 1 (Build 7601)</operatingSystem>
<userName>TestUser</userName>
<hostName>Host1</hostName>
<tempDir>C:/Users/TestUser/AppData/Local/Temp</tempDir>
<homeDir>C:/Users/TestUser</homeDir>

</installationConfig>

TS 4.2.2.2 taskConfig

The children of the element provide the information about the validation task configuration (i.e. veraPDF
Command Line Interface arguments). These settings are reusable across executions and installations. The
names of the elements:

● pdfaFlavor
● fixMetadata
● collectDetails
● reportProgress
● stopAfterErrors

Example

<taskConfig>
<pdfaFlavor>1a</pdfaFlavor>
<fixMetadata>true</fixMetadata>
<collectDetails verbosity="5">true</collectDetails>
<reportProgress>stdout</reportProgress>
<stopAfterErrors>10</stopAfterErrors>

</taskConfig>

103

TS 4.2.2.3 executionConfig

The children of the element provide the information about the configuration settings unique to a particular
validation task. The names of the elements:

● documentOrigin
● output
● report

Example

<executionConfig>
<documentOrigin>https://verapdf.org/Test.pdf</documentOrigin>
<output>C:/TestFiles/TestFixed.pdf</output>
<report>C:/TestFiles/TestReport.xml</report>

</executionConfig>

TS 4.2.2.4 processMetrics

This element provides information about the time taken to complete a particular task:

● processStart
● processEnd

Example

<processMetrics>
<processStart>2015-02-28T20:16:12+00:00</processStart>
<processEnd>2015-02-28T20:16:14+00:00</processEnd>

</processMetrics>

TS 4.2.3 validationInfo

The children of the element are described in the table below

Element name Presence Description

profile once Specifies the Profile that was used for PDF/A Validation

result once Results of the performed PDF/A Validation

The profile element contains the following children elements:

● name
● hash

They specify the name and the SHA-1 hash code of the Validation Profile.

Example

<validationInfo>
<profile>

<name>PDF/A-1a validation profile</name>
<hash>sha-1 hash code of the profile</hash>

</profile>
<result>...</result>

</validationInfo>

https://verapdf.org/Test.pdf

104

TS 4.2.3.1 result

The children of the element are described in the table below:

Element name Presence Description

compliant once The final resolution if the PDF Document is compliant with
the given PDF/A Flavor: true or false

statement once Textual statement indicating validation result; for example:
"The PDF document is not compliant with PDF/A-1a"

summary once Brief summary of all the performed checks and fixes.
Attributes:

● passedRules
● failedRules
● passedChecks
● failedChecks
● completedMetadataFixes
● failedMetadataFixes
● warnings

details once Details about the performed Checks of the Validation Rules
from the Validation Profile and the related Metadata Fixes

Example

<result>
<compliant>false</compliant>
<statement>STR_ID_04</statement>
<summary passedRules="215" failedRules="2" passedChecks="3097" failedChecks="2"
completedMetadataFixes="1" failedMetadataFixes="1" warnings="5"/>
<details>...</details>

</result>

TS 4.2.3.1.1 details

The children of the element are described in the table below

Element name Presence Description

rules once Lists all applied Rules with their statuses

warnings none or
once

Other warnings not related a specific Rule
Each warning message is placed in a separate child
warning element

105

Example

<details>
<rules>
 <rule id="rule1" status="passed" checks="1">...</rule>
 …

<rule id="rule53" status="failed" checks="4">...</rule>
…
<rule id="rule217" status="passed" checks="2">...</rule>

</rules>
<warnings>

<warning>STR_ID_115</warning>
<warning>STR_ID_179</warning>

</warnings>
</details>

Depending on its type a Rule may be applied several times in different places of the Document (for
example, the Rule like "A stream object dictionary does not contain the F key") so the Checks of a
particular Rule are reported. Each Check indicates its status (passed/failed) and location. The status of the
Rule is derived from the statuses of its Checks: all must pass in order to have ‘passed’ state for the Rule.

The rule element has nested location element that specifies the Check location.

The location level is specified by level attribute. Possible levels: document, page; in case of document level
the only possible nested element is metadataPath.

The location of a Check is provided in two forms:

● location in terms of the Validation Model: number of the related indirect PDF object and the
validation context

● location in terms of PDF structure and visualization: page id in the report, related resource id in the
PDF Features Report, bounding box, XMP location path

Example

<rule id="rule1" status="passed" checks="1">
<check status="passed">

<location level="page">
<context object="11">context</context>
<page id="page1"/>
<resource>

</resource>
<bbox llx="100" lly="50" urx="200" ury="70"/>

</location>
</check>

</rule>

If the Check is somehow related to XMP metadata of the Document or resource (as indicated by 'level'
attribute and 'resource' element) then metadataPath element may be present and provide the XMP
location path to the relevant metadata field in corresponding XMP packet.

A Check may issue a warning message that does not indicate a violation of PDF/A specification, but rather
a notification.

106

Example

<check status="passed">
<location level="document"/>
<warning>STR_ID_18</warning>

</check>

In case of a failed Check there is the error message that explains the reason why the Check failed.

Example

<check status="failed">
<error>STR_ID_305</error>
<location level="page">

<context object="11">context</context>
<page id="page2"/>
<resource>

</resource>
<bbox llx="241" lly="90" urx="321" ury="180"/>

</location>
</check>

A Check may trigger an automatic Metadata Fix attempt. The applicable Metadata Fixes are a part of the
Validation Model implementation. The description of the Metadata Fixes can be found in the Validation
Profile. If the Metadata Fix attempt is successful then there is the message that provides the details about
the performed Metadata Fix. In case of failed fix the message specifies the reason of the Metadata Fix fail.

Example

<check status="passed">
<location level="document">

<metadataPath>pdf:Keywords</metadataPath>
</location>
<fix status="completed">STR_ID_201</fix>

</check>
<check status="failed">

<error>STR_ID_126</error>
<location level="document">

<metadataPath>pdf:Producer</metadataPath>
</location>
<fix status="failed">STR_ID_309</fix>

</check>

TS 4.2.4 pdfFeatures

The children of the element are described in the table below

Element name Presence Description

informationDict once Document information dictionary content

metadata none or once Document metadata stream content (document-level
XMP packet)

documentSecurity once The details about Document security

107

Element name Presence Description

lowLevelInfo once The low level information about the Document, like
number of indirect objects, used filters, Document ID
etc

embeddedFiles none or once Information about Document embedded files

iccProfiles none or once Information about Document ICC profiles

outputIntents none or once Information about Document output intents

outlines none or once Information about bookmarks

annotations none or once Flat list of all the annotations in the Document

pages none or once Information about Document pages including all the
page resources

documentResources none or once Flat list of all the Document resources: graphic
states, color spaces, images, XObjects (images and
forms), patterns, shadings, fonts, procedure sets
and properties dictionaries

TS 4.2.4.1 informationDict

This element contain the list of entry elements; each element represents one single key-value pair from
PDF Document information dictionary. The dictionary key name is saved as the value of the key argument;
the dictionary value is saved as the value of the entry element.

Example

<informationDict>
<entry key="Title">The document title</entry>
<entry key="Author">The document author</entry>
<entry key="Subject">The document subject</entry>
<entry key="Keywords">keyword1, keyword2</entry>
<entry key="Creator">The document creator</entry>
<entry key="Producer">The document producer</entry>
<entry key="CreationDate">2014-11-23T15:41:28.018+03:00</entry>
<entry key="ModDate">2014-11-30T21:08:11.397+03:00</entry>
<entry key="CustomKey">CustomValue</entry>

</informationDict>

NOTE: many of these records may represent the same information as in documentInfo element
described above. However the data for documentInfo element can be taken from various sources,
for example from Document XMP metadata stream, in case the XMP modification date is more
recent than the Document modification date. On the other hand, informationDict element
represents the information exactly as it is in the Document information dictionary.

TS 4.2.4.2 metadata

This element contains the document-level XMP metadata package exactly as it is in the original PDF
Document or, if automatic XMP metadata fixing is enabled, in the resulting PDF Document. Since XMP
serialization is based on XML there is no need to change in the serialized XMP packet, except for
encoding. If the encoding used by XMP differs from encoding used for Report generation, the XMP will be
re-encoded to make it consistent with the rest of the Report.

108

Example

<metadata>
<x:xmpmeta x:xmptk="Adobe XMP Core 5.2">

<rdf:RDF>
<rdf:Description rdf:about="">

<xmp:CreatorTool>The document creator</xmp:CreatorTool>
</rdf:Description>
<rdf:Description rdf:about="">

<dc:format>application/pdf</dc:format>
<dc:title>

<rdf:Alt>
<rdf:li xml:lang="x-default">The document title</rdf:li>

</rdf:Alt>
</dc:title>
<dc:creator>

<rdf:Seq>
<rdf:li>The document author</rdf:li>

</rdf:Seq>
</dc:creator>

</rdf:Description>
...
</rdf:RDF>

</x:xmpmeta>
</metadata>

TS 4.2.4.3 documentSecurity

The children of the element are described in the table below.

Element name Presence Description

encrypted once The scope of the encryption. Possible values:
● None
● All
● AllExceptMetadata
● OnlyFileAttachments

method once The encryption method. Possible values:
● No
● Password
● Certificate

openPassword once The boolean value indicating if there is the
password for Document opening

permissionsPassword once The boolean value indicating if there is the
password for changing Document permissions

printingAllowed once Indicates if document printing is allowed.
Possible values:

● No
● LowResolution
● HighResolution

changesAllowed once The boolean value indicating if it is allowed to
modify the Document

109

Element name Presence Description

commentingAllowed once The boolean value indicating if it is allowed to
comment the Document

fillingSigningAllowed once The boolean value indicating if it is allowed to
fill in form fields and sign existing signature
fields in the Document

documentAssemblyAllowed once The boolean value indicating if it is allowed to
insert pages into the Document

contentCopyingAllowed once The boolean value indicating if it is allowed to
copy the content of the Document

contentAccessibilityEnabled once The boolean value indicating if it content
accessibility feature is enabled

pageExtractionAllowed once The boolean value indicating if it is allowed to
extract pages from the Document

level none or
once

The encryption level. Possible values:
● 40-bit RC4
● 128-bit RC4
● 128-bit AES
● 256-bit AES

Example

<documentSecurity>
<encrypted>All</encrypted>
<method>Password</method>
<openPassword>false</openPassword>
<permissionsPassword>true</permissionsPassword>
<printingAllowed>HighResolution</printingAllowed>
<changesAllowed>false</changesAllowed>
<commentingAllowed>false</commentingAllowed>
<fillingSigningAllowed>true</fillingSigningAllowed>
<documentAssemblyAllowed>false</documentAssemblyAllowed>
<contentCopyingAllowed>true</contentCopyingAllowed>
<contentAccessibilityEnabled>true</contentAccessibilityEnabled>
<pageExtractionAllowed>false</pageExtractionAllowed>
<level>128-bit RC4</level>

</documentSecurity>

110

TS 4.2.4.4 lowLevelInfo

The children of the element are described in the table below

Element name Presence Description

indirectObject
sNumber

once The total number of indirect objects in the Document

documentId

none or
once

The Document ID that consists of two strings
The ID strings are saved as the values of the attributes
creationId and modificationId

filters none or
once

The list of all filters used in the Document
The name of the used filter is the value of the attribute name
of the element filter. Possible filer names:

● ASCIIHexDecode
● ASCII85Decode
● LZWDecode
● FlateDecode
● RunLengthDecode
● CCITTFaxDecode
● JBIG2Decode
● DCTDecode
● JPXDecode
● Crypt

Example

<lowLevelInfo>
<indirectObjectsNumber>211</indirectObjectsNumber>
<documentId creationId="B6FB54F3F8554D478DC874F11DAD0F11"
modificationId="C91F037F8099F24DBB3FF4532DCBEDC8"/>
<filters>

<filter name="ASCIIHexDecode"/>
<filter name="LZWDecode"/>

</filters>
</lowLevelInfo>

TS 4.2.4.5 Embedded files

This element contains the list of embeddedFile elements; each of them represents the file that is
embedded into the PDF Document.

The children of the embeddedFile element are described in the table below

Element name Presence Description

fileName once The name of the embedded file

description none or once The description of the embedded file, if available

subtype none or once The MIME subtype of the embedded file, if available

111

Element name Presence Description

filter once The filter that is used to encode the file

creationDate none or once The embedded file creation date, if available

modDate none or once The embedded file modification date, if available

checkSum none or once The checksum of the embedded file, if available

size once The size of the embedded file

The element has the attribute id that contains the ID generated by the PDF parser for this Report entry.
This ID uniquely identifies the described object in the given Report and can be referenced from any other
part of the Report.

Example

<embeddedFiles>
<embeddedFile id="file1">

<fileName>data.pdf</fileName>
<description>This file contains the additional data</description>
<subtype>application/pdf</subtype>
<filter>FlateDecode</filter>
<creationDate>2013-10-21T15:18:32.241</creationDate>
<modDate>2013-12-15T14:08:17.759</modDate>
<checkSum>01234567890123456789012345678901</checkSum>
<size>1234</size>

</embeddedFile>
...

</embeddedFiles>

NOTE: this element as well as other elements in PDF Features Report contains only the information
provided by PDF parser. A typical use case for this information in Policy Checking is to verify there
are no attachments, or there are only attachments of a certain MIME type.There can be more
complex Policy requirements like checking if the attached images are valid or attached XML files
comply with some Schema. Checking such a requirement involves third-party parsers and
validators. According to the Validation Model design these kinds of checks are supported on the
level of the Validation Model implementation. They are specified in Validation Profile and performed
together with other Validation Checks. The results of these extra checks are included into the
Validation Report. Additional Policy Checking can be done based on results of these checks.

TS 4.2.4.6 iccProfiles

This element contains the list of iccProfile elements; each of them represents the ICC profile in the PDF
Document.

The children of the iccProfile element are described in the table below:

112

Element name Presence Description

version none or once The profile version, if available

cmmType none or once The CMM type, if available

dataColorSpace none or once The data color space, if available

creator none or once The profile creator, if available

creationDate none or once The profile creation date, if available

defaultRenderingIntent none or once The default rendering intent, if available

copyright none or once The profile copyright, if available

description none or once The profile description, if available

profileId none or once The profile ID, if available

deviceModel none or once The device model, if available

deviceManufacturer none or once The device manufacturer, if available

The element has the attribute id that contains the ID generated by PDF parser for this Report entry. This ID
uniquely identifies the described object in the given Report and can be referenced from any other part of
the Report.

Example

<iccProfiles>
<iccProfile id="icc1">

<version>2.1.0</version>
<cmmType>type</cmmType>
<dataColorSpace>RGB</dataColorSpace>
<creator>The creator</creator>
<creationDate>1998-02-09T06:49:00.000</creationDate>
<defaultRenderingIntent>Perceptual</defaultRenderingIntent>
<copyright>The copyright</copyright>
<description>The description</description>
<profileId>1DF3DFD53876AB129CBA7D4A2</profileId>
<deviceModel>The model</deviceModel>
<deviceManufacturer>The manufacturer</deviceManufacturer>

</iccProfile>
...

</iccProfiles>

TS 4.2.4.7 outputIntents

This element provides the information about the Document output intents

TS 4.2.4.8 outlines

This element provides the information about the bookmarks in the Document

113

TS 4.2.4.9 annotations

This element contains the list of annotation elements; each of them represents the annotation in the PDF
Document.

The annotation element contains the detailed information about annotation like type, location, references
to the annotation resources and other annotations used used by this annotation.

The element has the attribute id that contains the ID generated by the PDF parser for this Report entry.
This ID uniquely identifies the described object in the given Report and can be referenced from any other
part of the Report.

TS 4.2.4.10 pages

This element contains the list of page elements; each of them represents the page in the PDF Document.

The children of the page element are described in the table below.

Element name Presence Description

mediaBox once The media box of the page
The element uses attributes llx (lower left x coordinate), lly
(lower left y coordinate), urx (upper right x coordinate), ury
(upper right y coordinate) to provide the media box details

cropBox once The crop box of the page

trimBox once The trim box of the page

bleedBox once The bleed box of the page

artBox once The art box of the page

rotation once The rotation of the page

scaling once The scaling of the page

thumbnail once The boolean value indicating if thumbnail is present

resources none or once Flat list of all the page resources (scanned recursively)

annotations none or once Flat list of all the annotations present on the page

The element has the attribute id that contains the ID generated by the PDF parser for this Report entry.
This ID uniquely identifies the described object in the given Report and can be referenced from any other
part of the Report.

Also the page element contains the attribute orderNumber that provides the order number of the page in
the Document.

Example

<pages>
<page id="page1" orderNumber="1">

<mediaBox llx="0" lly="0" urx="600" ury="800"/>
<cropBox llx="0" lly="0" urx="600" ury="800"/>
<trimBox llx="0" lly="0" urx="600" ury="800"/>
<bleedBox llx="0" lly="0" urx="600" ury="800"/>

114

<artBox llx="0" lly="0" urx="600" ury="800"/>
<rotation>0</rotation>
<scaling>1</scaling>
<thumbnail>false</thumbnail>
<resources>...</resources>
<annotations>...</annotations>

</page>
...

</pages>

TS 4.2.4.10.1 resources

This element contains the list of the references (by id attribute) to the descriptions of all the resources
(scanned recursively) used by given page. The list of the resources is flat; it means a resource in this list
may be used by some other resource in the list, but this is not anyhow reflected in this part of the Report.
The parent-child relations between the resources are provided in resources description in the
documentResources element of the Report.

The xml structure of the resources element is similar to the layout of the resources description in the
documentResources element. The main difference is that the content of each element representing a
certain resource is empty, and there is only id attribute present that means this is the reference.

Example

<resources>
<graphicsStates>

<graphicsState id="gs1"/>
</graphicsStates>
<colorSpaces>

<colorSpace id="cs1"/>
<colorSpace id="cs2"/>
<colorSpace id="cs3"/>

</colorSpaces>
<fonts>

</fonts>
<images>

<image id="im1"/>
</images>

</resources>

TS 4.2.4.10.2 annotations

This element contains the list of the references (by id attribute) to the descriptions of all the annotations
present on given page.

Example

<annotations>
<annotation id="annot1"/>
<annotation id="annot2"/>

</annotations>

TS 4.2.4.11 documentResources

This element describes all the Document resources, separated by resource types.

The children of the page element are described in the table below.

115

Element name Presence Description

graphicsStates none or once List of all graphics states used in the Document

colorSpaces none or once List of all color spaces used in the Document

patterns none or once List of all patterns used in the Document

shadings none or once List of all shadings used in the Document

xobjects none or once List of all XObjects (images and forms) used in the
Document

fonts none or once List of all fonts used in the Document

procSets none or once List of all procedure sets used in the Document

propertiesDicts none or once List of all properties dictionaries used in the Document

Each of the elements in the table above contains the descriptions of the resources of the corresponding
type. The name of the element representing a resource is the same as the resource type.

Example

<documentResources>
<graphicsStates>

<graphicsState id="gs1">...</graphicsState>
</graphicsStates>
<colorSpaces>

<colorSpace id="cs1" family="DeviceRGB">...</colorSpace>
<colorSpace id="cs2" family="Indexed">...</colorSpace>

</colorSpaces>
…

</documentResources>

The description of each resource contains the references to all the used resources (children) in the
resources element and references to resources and/or pages which use this resource (parents) in the
parents element. Unlike the resources element in the page element the references to children (and
parents) only list immediate children (and parents). It is easy to traverse the resources tree up and down
using this referencing schema.

If the immediate parent of the resource is page it means the resource is used in page content stream.

Example

<graphicsState id="gs1">
<parents>

<page id="page1"/>
<page id="page2"/>
<form id="form1"/>

</parents>
…
<resources>

<fonts>

</fonts>

116

</resources>
</graphicsState>

The resource element has the attribute id that contains the ID generated by the PDF parser for this Report
entry. This ID uniquely identifies the described resource in the given Report and can be referenced from
any other part of the Report.

In case a resource has associated XMP metadata then the resource element will also include metadata
element containing the XMP metadata package.

TS 4.2.4.11.1 graphicsState

This element represents ‘graphics state’ resource. The graphics state details include settings for
transparency, overprints, fonts etc.

The children elements of the graphicsState element:

● transparency
● strokeAdjustment
● overprintForStroke
● overprintForFill

Example

<graphicsState id="gs1">
<parents>

<form id="form1"/>
</parents>
<transparency>false</transparency>
<strokeAdjustment>true</strokeAdjustment>
<overprintForStroke>true</overprintForStroke>
<overprintForFill>false</overprintForFill>
<resources>

<fonts>

</fonts>
</resources>

</graphicsState>

TS 4.2.4.11.2 colorSpace

This element represents ‘color space’ resource. The description of each color space shall contain the
details relevant for given color space family. The family is specified in family attribute. Possible color space
families:

● DeviceGray
● DeviceRGB
● DeviceCMYK
● CalGray
● CalRGB
● Lab
● ICCBased
● Indexed
● Pattern
● Separation
● DeviceN

117

The children of the colorSpace element depend on the color space family.

The children elements in case of Indexed color space:

● base (reference to the resource representing base color space)
● hival
● lookup

Example

<colorSpace id="cs2" family="Indexed">
<parents>...</parents>
<base id="cs1"/>
<hival>255</hival>
<lookup>000000 FF0000 00FF00...</lookup>

</colorSpace>

The children elements in case of Separation color space:

● alternate (reference to the resource representing alternate color space)
● colorName
● valuesDefinition (description of the color space values definition)

Example

<colorSpace id="cs3" family="Separation">
<parents>...</parents>
<alternate id="cs1"/>
<colorName>Link blue</colorName>
<valuesDefinition>...</valuesDefinition>

</colorSpace>

The children elements in case of ICCBased color space:

● alternate (reference to the resource representing alternate color space)
● components
● iccProfile (reference to an ICC profile from iccProfiles element)

Example

<colorSpace id="cs4" family="ICCBased">
<parents>...</parents>
<alternate id="cs1"/>
<components>3</components>
<iccProfile id="icc1"/>

</colorSpace>

TS 4.2.4.11.3 xobjects

This element contains the descriptions of ‘XObject’ resources. There are two types of XObjects: Image and
Form.

The children of the xobjects element are described in the table below

Element name Presence Description

images none or once List of all images used in the Document

118

Element name Presence Description

forms none or once List of all forms used in the Document

The children elements of the image element:

● width
● height
● bitsPerComponent
● imageMask
● maskedImage
● filters

Example

<image id="im1">
<parents>...</parents>
<width>256</width>
<height>256</height>
<bitsPerComponent>8</bitsPerComponent>
<imageMask>false</imageMask>
<maskedImage>false</maskedImage>
<filters>

<filter>ASCIIHexDecode</filter>
<filter>JBIG2Decode</filter>

</filters>
<resources>...</resources>
<metadata>...</metadata>

</image>

The children elements of the form element:

● bbox
● matrix

Example

<form id="form1">
<parents>...</parents>
<bbox llx="121" lly="24" urx="168" ury="55"/>
<matrix>1 0 0 1 0 0</matrix>
<resources>...</resources>

</form>

TS 4.2.4.11.3 font

This element represents ‘font’ resource. The description of each font contains the details relevant for given
font type.

The children elements of the font element:

● subtype
● name
● baseName
● firstChar

119

● lastChar
● widths
● encoding
● embedded
● subset
● fontDescriptor (the font descriptor describing the font's metrics other then its glyph widths)

Example

<parents>...</parents>
<subtype>Type1</subtype>
<name>Helvetica-Bold-Font</name>
<baseName>Helvetica-Bold</baseName>
<firstChar>0</firstChar>
<lastChar>255</lastChar>
<widths>255 255 ... 380</widths>
<encoding>StandardEncoding</encoding>
<embedded>false</embedded>
<subset>false</subset>
<fontDescriptor>...</fontDescriptor>

TS 4.3 Report example

The self-documented example of the Report prototype: ReportExample.xml

The complete Report schema will be created after the report structure is agreed among all the
stakeholders.

https://raw.githubusercontent.com/verapdf/verapdf.github.io/master/examples/phase1/MachineReadableReportExample.xml

120

TS 5 Policy Profile
The main intention of the Policy Profile is to define Checks of a certain condition imposed on the XML
Machine-readable Reports so it is logical to use Schematron language as the basis to define the Profile.

TS 5.1 Schematron overview

Schematron is a rule-based validation language for making assertions about the presence or absence of
patterns in XML documents. It is a structural schema language expressed in XML using a small number of
elements and XPath.

XPath expressions form the core of the language. They are used in order to formulate rules to check the
coherence of XML data.

In a typical implementation, the Schematron schema XML is processed into normal XSLT code for
deployment anywhere that XSLT can be used.

Schematron has been standardized to become part of ISO/IEC 19757 - Document Schema Definition
Languages (DSDL) - Part 3: Rule-based validation - Schematron.

This standard is available free on the ISO Publicly Available Specifications list:
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html

Schemas that use ISO/IEC FDIS 19757-3 should use the following namespace:

http://purl.oclc.org/dsdl/schematron

ISO “reference” implementation can be found here:

http://www.schematron.com/implementation.html

NOTE: ISO officially does not endorse reference implementations, however, this version is
maintained by the editor of the ISO Standard and developers seeking better understanding of the
ISO Standard can reference and follow this implementation.

The “reference” implementation is available as:

● set of XSLT files for XSLT 1.0 and XSLT 2.0
● jar representing Schematron for Apache ANT (new beta)

The veraPDF project intention is to use ISO “reference” XSLT-based implementation that will be driven by
an open-source XSLT engine.

The ISO “reference” XSLT-based implementation (called Schematron skeleton) generates the result of
validation expressed in Schematron Validation Report Language (SVRL). SVRL is a simple report language
defined as part of ISO Schematron. It provides a fairly full set of information from validating a document,
and can be used as the basis of subsequent transformations. It is used as the basis for the Machine-
readable Policy Checks Report generation.

The validation process consists of the two phases:

1. applying the Schematron skeleton XSLT to Schematron schema to get a new XSLT stylesheet that
represents the Schematron schema in XSLT

2. applying the resulting XSLT to the XML document to validate it

http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://standards.iso.org/ittf/PubliclyAvailableStandards/index.html
http://purl.oclc.org/dsdl/schematron
http://www.schematron.com/implementation.html

121

Running a Schematron validation in steps using ISO “reference” implementation consists of the following
steps:

1. perform XSLT transformation with the arguments:
input: profile.sch

output: profile1.sch

stylesheet: iso_dsdl_include.xsl

2. perform XSLT transformation with the arguments:
input: profile1.sch

output: profile2.sch

stylesheet: iso_abstract_expand.xsl

3. perform XSLT transformation with the arguments:
input: profile2.sch

output: profile.xsl

stylesheet: iso_svrl.xsl

4. perform XSLT transformation with the arguments:
input: report.xml

output: policy_checks_result.svrl

stylesheet: profile.xsl

Any tool that is able to perform XSLT transformations can be used in the steps from above. The phase 1
includes the steps 1, 2 and 3. The phase 2 is represented by the step 4.

122

Example

Assuming the tool is ‘xsltproc’ the example shell script to perform the validation looks like the following:

#!/bin/bash
echo Step 1 ...
xsltproc iso_dsdl_include.xsl profile.sch > profile1.xsl
echo Step 2 ...
xsltproc iso_abstract_expand.xsl profile1.xsl > profile2.xsl
echo Step 3 ...
xsltproc iso_svrl_for_xslt1.xsl profile2.xsl > profile.xsl
echo Step 4 ...
xsltproc profile.xsl report.xml | tee policy_checks_result.svrl

 More info: http://broadcast.oreilly.com/2009/02/running-schematron-batshell-an.html

NOTE: there is Schematron Text validator that is based on Schematron skeleton. This validator
gives simple text output when errors (failed assertion or successful report) is found. The result is
written to output as simple text. More info can be found here:
http://www.schematron.com/validators.html

Available Java implementations include:

● http://phax.github.io/ph-schematron/
● https://code.google.com/p/probatron4j/

TS 5.2 Using Schematron for Policy Checks

The Schematron language is rather simple to use. A typical Schematron schema consists of a set of
patterns each defining a set of rules that has to be applied to XML document.

NOTE: the Policy Profile is expected to be written by a user of veraPDF software so we need to be
sure the Profile format is easy enough. The Schematron language fits this requirement.

Example

<?xml version="1.0" encoding="UTF-8"?>
<schema xmlns="http://purl.oclc.org/dsdl/schematron">
 <ns uri="http://www.verapdf.org/MachineReadableReport" prefix="vmrr"/>
 <pattern>
 <rule context="...">...</rule>
 </pattern>
 <pattern>
 <rule context="...">...</rule>
 </pattern>
 ...
</schema>

The rules express specific requirements to the content of the XML file. The requirements are based on
XPath.

NOTE: all the examples below are created based on the ReportExample.xml from the chapter about
the Machine-readable Report format.

http://broadcast.oreilly.com/2009/02/running-schematron-batshell-an.html
http://www.schematron.com/validators.html
http://www.schematron.com/validators.html
http://phax.github.io/ph-schematron/
https://code.google.com/p/probatron4j/
https://raw.githubusercontent.com/verapdf/verapdf.github.io/master/examples/phase1/MachineReadableReportExample.xml

123

TS 5.2.1 Policy requirement examples

Policy requirement: the PDF version must be 1.6 or greater.

<rule context="/vmrr:report/vmrr:documentInfo/vmrr:pdfVersion">
<report test="number(current()) < 1.6">

Policy check error: the PDF version is <value-of select="current()"/>. The
PDF version must be 1.6 or greater!

</report>
</rule>

For the ReportExample.xml this rule generates the error:

“Policy check error: the PDF version is 1.5. The PDF version must be 1.6 or greater!”

Policy requirement: the validation must be completed without any warnings.

<rule context="/vmrr:report/vmrr:validationInfo/vmrr:result/vmrr:summary/@warnings">
<report test="number(current()) != 0">

Policy check error: the document was validated with <value-of
select="current()"/> warnings. The validation must be completed without any
warnings!

</report>
</rule>

For the ReportExample.xml this rule generates the error:

“Policy check error: the document was validated with 5 warnings. The validation must be completed
without any warnings!”

Policy requirement: the Document must be not encrypted.

<rule context="/vmrr:report/vmrr:pdfFeatures/vmrr:documentSecurity/vmrr:encrypted">
<report test="current() != 'None'">

Policy check error: the document encryption is '<value-of
select="current()"/>'. The document must be not encrypted!

</report>
</rule>

For the ReportExample.xml this rule generates the error:

“Policy check error: the document encryption is 'All'. The document must be not encrypted!”

Policy requirement: filters JBIG2Decode and JPXDecode are not allowed in the Document.

<rule
context="/vmrr:report/vmrr:pdfFeatures/vmrr:lowLevelInfo/vmrr:filters/vmrr:filter">

<report test="count(current()[@name='JBIG2Decode']) > 0">
Policy check error: usage of the filter JBIG2Decode in the document is not
allowed!

</report>
<report test="count(current()[@name='JPXDecode']) > 0">

Policy check error: usage of the filter JPXDecode in the document is not
allowed!

</report>
</rule>

For the ReportExample.xml this rule generates the errors:

“Policy check error: usage of the filter JBIG2Decode in the document is not allowed!”

“Policy check error: usage of the filter JPXDecode in the document is not allowed!”

124

Policy requirement: pages in the Document must be neither rotated nor scaled.

<rule context="/vmrr:report/vmrr:pdfFeatures/vmrr:pages/vmrr:page">
<report test="number(current()/vmrr:rotation) != 0">

Policy check error: the page with id='<value-of select="current()/@id"/>'
is rotated. The document pages must not be rotated!

</report>
<report test="number(current()/vmrr:scaling) != 1">

Policy check error: the page with id='<value-of select="current()/@id"/>'
is scaled. The document pages must not be scaled!

</report>
</rule>

For the ReportExample.xml this rule does not generate any errors.

Policy requirement: first page of the Document must not contain images.

<rule
context="/vmrr:report/vmrr:pdfFeatures/vmrr:pages/vmrr:page[@orderNumber='1']/vmrr:reso
urces/vmrr:images">

<report test="count(current()/vmrr:image) > 0">
Policy check error: the first page contains image with id='<value-of
select="current()/vmrr:image/@id"/>'. The first page of the document must
not contain images!

</report>
</rule>

For the ReportExample.xml this rule generates the error:

“Policy check error: the first page contains image with id='im1'. The first page of the document must
not contain images!”

Policy requirement: fonts used on the first page of the Document must have 'StandardEncoding' only.

<rule
context="/vmrr:report/vmrr:pdfFeatures/vmrr:pages/vmrr:page[@orderNumber='1']/vmrr:reso
urces/vmrr:fonts/vmrr:font">

<report
test="/vmrr:report/vmrr:pdfFeatures/vmrr:documentResources/vmrr:fonts/vmrr:font[@
id=current()/@id]/vmrr:encoding != 'StandardEncoding'">

Policy check error: the first page uses font with id='<value-of
select="current()/@id"/>' with encoding '<value-of
select="/vmrr:report/vmrr:pdfFeatures/vmrr:documentResources/vmrr:fonts/vmr
r:font[@id=current()/@id]/vmrr:encoding"/>'. The fonts used on the first
page of the document must have 'StandardEncoding' only!

</report>
</rule>

For the ReportExample.xml this rule generates the error:

“Policy check error: the first page uses font with id='f2' with encoding 'WinAnsiEncoding'. The fonts
used on the first page of the document must have 'StandardEncoding' only!”

The complete example of the Policy Profile: PolicyProfileExample.sch

https://github.com/verapdf/verapdf.github.io/blob/master/examples/phase1/PolicyProfileExample.sch

125

TS 6 Test framework

TS 6.1 Terms and Definitions

Term Definition

Unit Tests The set of tests run by developers on compilation and enforced
automatically on code check in. Unit tests are generally at class /
method level and test a single, simple case. Unit tests are run as
part of the developer workflow and shouldn’t take so long to run as
to hold developers up.

Integration Tests The set of tests used to test the behaviour of the individual
software components and their interaction. Integration tests may
take considerably longer to run than unit tests and will typically be
run nightly.

Validator Corpora Test corpora that instantiate a reference interpretation of the
PDF/A standards. The corpora consist of files that represent
individual requirements of the PFD/A standard.

Policy Checker Corpus Used to check the function of the policy checking component.
These files represent the custom requirements gathered gathered
from memory institutions outside of the PDF/A specifications.

Metadata Fixer Corpus A collection of files that present scenarios correctable by the
Metadata Fixer.

TS 6.2 Test corpora

The test file corpora will be curated according to the approach set out in CE 3.2 Corpora and will be
developed under revision control in a separate repository to the source code.

TS 6.2.1 Unit test files

A collection of test files created and used by developers and required for running the projects unit tests
successfully. These test files must be part of the code base (packaged as Java test resources within the
appropriate Maven modules). The files will include examples of:

● PDFs used in unit tests;
● example Policy Profiles used to test the Policy Checker;
● Report Templates used to test the generation of Human-readable Reports.

There may be examples of other file types dependant upon test requirements. This test set will be
developed with the software components and will be under revision control alongside the source code.

126

TS 6.2.2 Validator test corpora

One of the veraPDF consortiums aims is to provide an objective “ground truth” corpus that instantiate the
requirements of the various PDF/A specifications. The Validator Corpora will consist of PDF Documents
that represent individual requirements derived from the specifications. These corpora will be used to test
the veraPDF validator but could also be used to test 3rd party validators.

Testing the validator against the entire set of corpora may take too long to run regularly as unit testing. A
nightly QA build on the OPF Jenkins server will compile and test the current master development branch
against the validator corpora.

TS 6.2.3 Metadata Fixer test corpus

The fixer test corpus consists of files that are valid PDF/A Documents of some PDF/A Flavour except some
type of metadata violation / inconsistency. The Documents represent scenarios where some kind of
Metadata Fix or repair resulted in a valid PDF/A.

TS 6.2.4 Policy test corpus

This corpus will represent the Policy Checking requirements gathered from memory institutions. PDF
Documents that demonstrate particular Policy issues will be coupled with test Policy Profiles (XML
Schematron files) that express a test for the Policy issue.

Testing against the full Policy test corpus isn’t envisaged as a unit testing activity. Depending upon the
corpus size and time taken to run the tests this might be a nightly QA build activity.

TS 6.2.5 PREFORMA test corpus

This corpus will be provided by the PREFORMA partners for the final test phase of the project. The
functional scope tested by this corpus (Validation, Policy Checking, Metadata Fixer) and any requirements
implied by the corpus are currently unknown.

Automated testing of the software against various test corpora is planned to be a business as usual activity.
A nightly automated test against the PREFORMA corpus will be set up as soon as the corpus is made
available.

TS 6.3 Referenced files

Referenced files are files used to verify test results as opposed to files to perform tests upon. These will
consist of various formats, for example:

● PDF Documents that represent cases such as the expected result of a specific Metadata Fix;
● XML files that are the expected Machine-readable Reports for comparison with the those generated

as the results of testing;
● HTML and PDF files used to compare to Human-readable Reports produced during testing.

Given that these files often represent the results of testing against particular test files they should be stored
with the test data. Reference files for unit testing are packaged as test resources with unit test data files,
those for test corpora should accompany the particular the corpora they’re used to verify.

TS 6.4 Automation

TS 6.4.1 Unit testing

Unit tests will be implemented as Junit test cases and suites and run as part of the Maven build (mvn test).
This ensures that the test are run as often as the software is compiled. The full set of tests must pass
before committing code to master / pushing to GitHub. See CE 3.3 Code for details of the community

127

contribution guidelines.

TS 6.4.2 Continuous integration

Continuous integration tests, run at code merge with GitHub, will be set up using the Travis continuous
service. The first task of this build is to ensure that committed code compiles and if it does to run the unit
tests. Travis provides a working Java / Maven environment and so can use the projects standard build and
test tools.

During the initial phases of development it will be possible to use Travis to download the various test
corpora and run integration level tests on the software. This might become impractical as the corpora grow
in size and the time taken to download them and execute the tests increases. The mitigation is to execute
these longer running integration tests as part of the nightly QA and release build on the OPF Jenkins
server.

TS 6.4.3 Virtualised build/test environment

The project will also include a virtualised continuous integration environment for use by:

● internal developers allowing them to run the full integration test set before pushing code to GitHub;
● external developers wishing to test their contributions to the project; and
● anyone wishing to test the veraPDF software independently.

This virtual test environment will initially be a virtual machine template set up to build and test the users
most recent check in using pre-defined corpora and report the results.

128

TS 7 Internationalization
Internationalization and localization are means of adapting computer software to different languages,
regional differences, and technical requirements of a target market.

Internationalization is the process of designing a software application so that it can potentially be
adapted to various languages and regions without engineering changes.

Localization is the process of adapting internationalized software for a specific region or language
by adding locale-specific components and translating text. Localization (which is potentially
performed multiple times, for different locales) uses the infrastructure or flexibility provided by
internationalization.

Internationalization of the veraPDF Conformance Checker includes the language-independent design of the
internal software logic and interfaces. It means the validation algorithms as well as various kinds of
Machine-readable Reports, Validation and Policy Profiles, and Report Templates do not depend on the
language that is used to create the final Human-readable Report. Also veraPDF internationalization
describes how different languages can be used for Human-readable Reports generation and defines the
ways to extend the set of the supported languages.

The library supports different languages and country-specific information on the step of Human-readable
Report generation. In more detail:

● the Machine-readable Report is based on English language only;
● the Report Templates convert Machine-readable Reports to a Human-readable Report (see TS 8

Report Template format). The Report Template defines the layout and can be used with different
Language Packs;

● the Language Pack specifies all string constants for a given language as well as additional country
info (such as date format). The Language Pack has an accessible format, which allows technical
translators to create such packs without the need of special programs or tools.

Initial implementation will support a limited number of European languages to demonstrate this mechanism.
It is assumed that further translations will be created by the community. Software messaging is controlled
by domain experts as described in CE 3.4 Messaging.

The initial release of the veraPDF software will document the localization process in detail, and will allow
support for new languages without updating the software.

TS 7.1 Overview

The base technology for veraPDF localization is Translation Memory eXchange (TMX).

TMX is the vendor-neutral open XML standard for the exchange of Translation Memory (TM) data created
by Computer Aided Translation (CAT) and localization tools. The purpose of TMX is to allow easier
exchange of translation memory data between tools and/or translation vendors with little or no loss of
critical data during the process.

The benefits of using TMX:

● it is open standard that is commonly used in many industries;
● it is XML-based so it does not introduce any additional technology which means less complexity for

development and maintenance;
● there are existing tools to work with TMX, including free and open-source, so it will be easier to edit

and extend the default TMX provided together with veraPDF in order to add new languages.

129

TS 7.2 Architecture

The veraPDF software is created using English language as the basis. So without the extra localization
work the software can generate Human-readable Reports in English.

The software is designed in the way that any text string (that is in English always) that may appear in a
Human-readable Report is assigned a string ID. The pairs < string ID, English string > are kept in a
separate resource file that is later used for automatic generation of a base TMX file. The string IDs are
used instead of the actual text in the Machine-readable Validation Report and in all other similar places.
The IDs will be used for searching for an actual localized text string at the moment the Human-readable
Report is created.

Examples:

The example entries from the Machine-readable Validation Report
<error>STR_ID_305</error>
<warning>STR_ID_70</warning>
<check id="check1">

<clause>6.1.13</clause>
<title>STR_ID_501</title>
<description>STR_ID_502</description>

</check>

In this example the error message corresponding to the string ID STR_ID_305 may be a fixed text like “The
document catalog dictionary shall not contain a key with the name OCProperties”. Both the ID and the
actual text are stored in the resource file and will be automatically placed by the build system in TMX file for
future translation.

The messages generated for the Machine-readable Report may be dynamic. It means they are created
using some base message with the placeholders which are replaced by some actual values at the moment
validation happens.

Validation-related messages are managed by the PDF Validation TWG (see CE 3.4 Messaging).

Example:

<error>
<message>STR_ID_118</message>
<argument>STR_ID_402</argument>
<argument>Test title</argument>
<argument>Unknown title</argument>

</error>

In this example the base message defined by STR_ID_118 may be a text like “The value of the %1
metadata entry is not consistent: the document information dictionary contains the value ‘%2’ and the
document XMP metadata contains the value ‘%3’”. The placeholders %1, %2, %3,... are to be replaced by
the values from argument elements in a corresponding order. The string for STR_ID_402 is “title”. It means
the resulting message in the Human-readable Report will look like the following:

“The value of the title metadata entry is not consistent: the document information dictionary contains
the value ‘Test title’ and the document XMP metadata contains the value ‘Unknown title’”.

Since the base message and its arguments are separated it is not a problem get the resulting message
translated assuming that the translations for the base message and the arguments defined by string IDs
are available at the moment the Human-readable Report is generated: first each component is translated
and then the placeholders are replaced.

Keeping text strings in a separate resource file and using string IDs everywhere means better control over

130

the development and the translation processes: we can be sure that any text string intended for a Human-
readable Report will eventually get reviewed and translated.

The base TMX file base.tmx defines the mapping between string IDs and actual English text strings. Thus
the base TMX file does not contain any translations yet, but it can be extended so each English text string
is accompanied by a number of its translations to other languages. The base TMX file is actually Language
Pack template.

The automatically generated base TMX is passed to a translator that creates the file default.tmx containing
the pairs < string ID, { English string, German string, French string, ...} >. The resulting TMX file provides
the translations for some pre-defined set of languages and is included into the released version of
veraPDF. So default.tmx file is the Language Pack for all the languages it provides translations for.

NOTE: It is not a problem to keep them all in a single file as they anyway are installed by default.
Alternatively we can split default.tmx into separate TMX files so each file contains translations for a
specific language only.

When installed veraPDF software has translations subfolder in the folder with other veraPDF resources.
By default the translations subfolder contains two files: base.tmx and default.tmx. These files are
accessible for a user of the software. It means the files can be found easily and the user can modify them in
order to support additional languages.

The user can add his own Language Packs into the translations subfolder. Although the user can modify
original default.tmx file the recommended way is to start from the Language Pack template base.tmx and
then modify it in order to provide translations for a new language. The TMX is open standard and there are
a lot of free tools that can be used for editing TMX files, so the user can choose any of them. The resulting
new TMX file is the Language Pack that can be shared between different installations of the veraPDF
software.

The veraPDF software loads all TMX files available in translations subfolder (except for base.tmx as it is
not expected to contain any translations). When a translated string for a specific string ID is to be found the
software first searches in default.tmx and then in the rest of the loaded TMX files in the alphabetical order.
As soon as the string is found the searching stops and the string is included into the Human-readable
Report being created. If the string for given string ID is not found anywhere, the string ID is written in the
Human-readable Report as is. This means if for some reason in the Machine-readable Report instead of a
string ID the actual text is used, it will move into the Human-readable Report and, although probably not
localized, still it is not lost.

The latter may be important for Policy Checking. The Policy Profile syntax is based on Schematron schema
syntax that does not provide multi-language support. When defining a rule for Policy Checking a user has
to provide the messages which will be reported in the Policy Checks Machine-readable Report in case the
rule generates some error. The messages may be static (the text is always the same) or dynamic (the text
may change depending on the context of the error).

Examples:

Static message

<report test="count(current()[@name='JBIG2Decode']) > 0">
Policy check error: usage of the filter JBIG2Decode in the document is not
allowed!

</report>

131

Dynamic message

<report test="number(current()) < 1.6">
Policy check error: the PDF version is <value-of select="current()"/>. The PDF
version must be 1.6 or greater!

</report>

In case of static message instead of the message itself a string ID can be used in the Profile, so this ID will
be included into the Machine-readable Report. If the same ID is added into TMX file together with the
original message and its translations as described above then it will be correctly resolved during the
Human-readable Report generation.

However in case of dynamic message using string ID is not feasible as the actual text message will be
different in each particular case. It would be logical to use arguments similar as for validation messages but
Schematron schema syntax does not support this.

Another point is that Policy Profiles will be created by the users of the veraPDF software, so for them it may
be more difficult to base them on string IDs, then manually map these IDs into actual messages in TMX file.
So for them more easy would be to provide actual messages in some chosen language directly in Policy
Profile.

The above means that the Policy Checks Machine-readable Report may contain actual messages and on
the next stage they simply will be moved into the Human-readable Report which is the correct behavior in
given case.

NOTE: since Schematron is XSLT-based solution it should be possible to localize dynamic
messages from Policy Checks Profile using the approach described here:
http://www.codeproject.com/Articles/338731/LocalizeXSLT.

TS 7.3 veraPDF TMX format details

The version of the TMX specification that is used by veraPDF is 1.4b: http://www.gala-
global.org/oscarStandards/tmx/tmx14b.html

The TMX 1.4b specification is made available by the Localization Industry Standards Association [LISA]
under the terms of the Creative Commons Attribution 3.0 Unported (CC BY 3.0) license.

TS 7.3.1 TMX format overview

A TMX document is an XML document whose root element is tmx. The tmx element contains two children:
header and body. General information about the TMX document is described in the attributes of the
header element. Additional information is provided in the note, ude, and prop elements. The main content
of the TMX document is stored inside the body element. It holds a collection of translations contained in
translation unit elements (tu). Each translation unit contains text in one or more languages in translation
unit variant elements (tuv). The text of a translation unit variant is enclosed in a seg element.

Example:

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE tmx PUBLIC "-//LISA OSCAR:1998//DTD for Translation Memory eXchange//EN"
"tmx14.dtd" >
<tmx version="1.4">
 <header creationtool="TMX Editor"
 creationtoolversion="1.0.1"
 srclang="en-US"
 adminlang="en"
 datatype="plaintext"
 o-tmf="unknown"

http://www.codeproject.com/Articles/338731/LocalizeXSLT
http://www.gala-global.org/oscarStandards/tmx/tmx14b.html
http://www.gala-global.org/oscarStandards/tmx/tmx14b.html
http://creativecommons.org/licenses/by/3.0/

132

 segtype="sentence">
 </header>
 <body>
 <tu>
 <tuv xml:lang="en-US">
 <seg>The document catalog dictionary shall not contain a key with
the name OCProperties</seg>
 </tuv>
 <tuv xml:lang="de-DE">
 <seg>{text in German}</seg>
 </tuv>
 <tuv xml:lang="fr-FR">
 <seg>{text in French}</seg>
 </tuv>
 </tu>
 </body>
</tmx>

The TMX DTD will allow a tu to contain a single tuv element, and this is used for base.tmx because this
file does not provide translations yet, and only defines the mapping between string ID and a corresponding
text.

Normally a segment helps to translate from one language to another, thus when it comes to default.tmx or
a custom TMX file the minimum number of languages in a tu element should be two.

TMX format defines two levels:

● Level 1: Only translatable text is included in the TMX document, leaving formatting information
aside. This means that seg elements do not contain any inline tags.

● Level 2: Text and markup information are included in the TMX document. Inline tags are used to
carry formatting information.

veraPDF project uses only Level 1 as all the human-readable text is plain text, so no formatting information
is necessary.

TS 7.3.2 Implementation

As described above the first TMX file is base.tmx. This file defines the mapping between string ID and
actual message in English so this is a Language Pack template. For this purpose the prop element is used.
The same element is used to specify the type of the text string (“Message”, “Argument”, etc) that is later
used at the moment the translation is searched.

Example:
<tu>

<prop type="ID">STR_ID_305</prop>
<prop type="Type">Message</prop>
<tuv xml:lang="en">

<seg>The document catalog dictionary shall not contain a key with the name
OCProperties</seg>

</tuv>
</tu>

The source language of base.tmx is ‘en’. This is the example of base.tmx

Using base.tmx as the starting point a translator creates default.tmx that contains the translations for any
number of languages. The same starting point shall be used by a veraPDF software user in order to add
more languages.

https://raw.githubusercontent.com/verapdf/verapdf.github.io/master/examples/phase1/translation-base.tmx

133

If needed the original message that is in general English (‘en’) can be defined more specifically for “en-US”,
“en-GB” etc.

Example:
<tu>

<prop type="ID">STR_ID_305</prop>
<prop type="Type">Message</prop>
<tuv xml:lang="en-US">

<seg>The document catalog dictionary shall not contain a key with the name
OCProperties</seg>

</tuv>
<tuv xml:lang="de-DE">

<seg>{text in German}</seg>
</tuv>
<tuv xml:lang="fr-FR">

<seg>{text in French}</seg>
</tuv>

</tu>

This is the example of default.tmx

As explained above a user can add custom TMX files with more languages.

The identifier like ‘en-US’ describes generic language (‘en’) together with its specific language (‘US’). When
a translation is searched at the moment the Human-readable Report is generated, veraPDF tries to find the
tuv element with the xml:lang attribute that exactly matches the language requested by the user for the
Report generation. In case there is no entry with the exact match but there is the entry with matching
generic language veraPDF may choose to use this entry. In this case the priority is given to the entry with
generic language only.

TS 7.3.3 Tools

This sub-clause lists the tools which can be used to work with TMX files.

● TMXValidator: “checks your documents against TMX DTD and also verifies if they follow the
requirements described in TMX specifications”

● Heartsome TMX Editor: “This is the powerful TM maintenance tool for all CAT software”

TS 7.3.4 Additional locale information

Localization requires not only translated text messages, but also other information like numbers, dates etc
formatted according to the local rules.

The formatting rules shall be the part of the TMX file. For example, in case of numbers the special patterns
are added into the default.tmx defining the formatting for each specific locale.

https://raw.githubusercontent.com/verapdf/verapdf.github.io/master/examples/phase1/translation-default.tmx
http://sourceforge.net/projects/tmxvalidator/
https://github.com/heartsome/tmxeditor8

134

Example:
<tu tuid="NumberFormat">

<tuv xml:lang="en">
<seg>#,###.00</seg>

</tuv>
<tuv xml:lang="es">

<seg>#.###,00</seg>
</tuv>
<tuv xml:lang="fr">

<seg># ###,00</seg>
</tuv>

</tu>

The patterns define the way how space, dot and comma shall be used to format number in each specific
case. The similar patterns can be defined for dates formatting.

135

TS 8 Report Template format

TS 8.1 Overview

A Report Template defines the Human-readable Report layout, artworks, fonts, and other formatting details.
It also controls the verbosity level and allows filtering out certain types of messages or grouping them by
severity or object type. The information that will be included into the resulting Report is anyway limited by
the verbosity requested when generating source Machine-readable Report.

The Report Template itself does not include the exact text messages to be used for Human-readable
Report. There is a Language Pack that provides such messages in the expected language, see TS 7
Internationalization and CE 3.4 Messaging.

Since the syntax for Machine-readable Reports is XML the following technologies are the base for the
Report Templates:

● XSLT with a third-party XSLT transformation tool - for a Report Template to convert to an HTML
Human-readable Report, for example used in FS 4.2.1 Web Graphical User Interface (GUI-W);

● XSL-FO with a third-party FO-processor (for example, Apache FOP) - for a Report Template to
convert to PDF Human-readable Report (see Annex E.4.4 Reporter).

The third-party XSLT engine for converting to HTML can be the same as used for applying Schematron
validation rules defined by Policy Profile (see TS 5 Policy Profile).

In order to convert XMP metadata into a human-readable form a Template can additionally use XMP
location path syntax.

In case the target format is HTML the resulting Report can be either a single HTML file with all the
resources embedded (CSS, JS, images) or a folder containing a base HTML file and all other resources as
external files. The Report Template for HTML generation shall provide an option to control this.

TS 8.2 Accessibility

Human-readable Reports will follow accessibility principles stated in ISO 9241-171:2008.

Human-readable Reports in HTML will comply with WCAG 2.0 Level AA.

See also FS 4 Interfaces for a discussion of the approach to user-centred design.

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=39080
http://www.w3.org/TR/WCAG20/

136

TS 9 Integration with third-party tools
The ability to integrate with other applications is a key aspect of the Conformance Checker extensibility.

TS 9.1 Overview

The product of parsing the PDF Document and extracting the Embedded Resources (image, font, colour
profiles, etc.) is data is packed into an intermediate format understandable by Embedded Resource Parsers
which are third-party software tools. These tools process the Embedded Resource and return an
Embedded Resource Report as described in FS 3.1 Embedded Resources.

To enable integration with a third-party libraries/application/services it is necessary to:

● define the interaction interface to be used between Conformance Checker and a third-party tool;
● describe the ways to adapt third-party tools interfaces to the defined interaction interface.

Figure 1: Third-party tools integration

Figure 1 show the interaction schema. The Conformance Checker exposes the interaction interface that
shall be supported by any third-party in order to be incorporated into validation process. Normally all third-
party processing utilities and libraries for processing images, fonts, and other resources publish their own
interfaces which are far from what the Conformance Checker requires. Then it is necessary to create
interface adaptors which adapt the interface of each selected third-party tool to the interaction interface.

The interaction interface is published by components of the Conformance Checker: the Command Line
Interface (CLI) and Library. The third-party tool interfaces may vary depending on the tool design and
implementation. The interface adaptor creation is the responsibility of the user who wants to integrate a
certain third-party tool into the Conformance Checker validation process.

TS 9.1.1 Command Line Interface

The interaction interface exposed by CLI defines that in case of an Image XObject the image data stream
is saved into the temporary external binary file. The image metadata as well as the required image check is
saved as the configuration XML file. Also the interaction interface declares that the paths to these temp files
are passed as the first and second command line arguments for a third-party command line interface utility.
The third parameter is the path to not yet existing report file that have to be created by the utility. The CLI
starts the utility, waits till it finishes processing and reads the results from the saved report. The interaction
interface describes the way how such an utility can be “registered” in CLI: the path to it is specified as one
of the arguments of the command to execute CLI validation.

137

The third-party tool that a CLI user wants to use to check the image is, for example, the dynamic library
with some published interface (third-party tool interface). Then the required interface adaptor is the
command line interface utility that accepts the paths to temp files as arguments, loads the third-party
dynamic library, performs the requested checks and saves the results in the report file.

Alternatively instead of temporary files the interaction interface may specify stdin/stdout pipes or TCP/IP
connections as the communication channels. The third-party tools may be command line interface utilities,
dynamic libraries, COM objects, web services, hot folder applications, etc.

TS 9.1.2 API Interface

The interaction interface exposed by the Library is a set of Java interfaces (which shall be implemented)
as well as environment objects (for example, logger object to report results of the checks). The interfaces
use PDF objects like Stream, Resource, etc.

The third-party tool is, for example, a REST (third-party tool interface) service accessible over the
Internet that is able to perform fonts checks. In given case the required interface adaptor is the set of
implementations of the Java interfaces. The implementation accepts font object as a Resource, sends the
font data in HTTP request composed according to the service REST API documentation and logs all the
results using the logger object.

Like in the case of the CLI interaction interface the third-party tools may be command line interface utilities,
dynamic libraries, COM objects, web services, hot folder applications, etc.

138

Annex A: Communications Plan
A.1 Aims and objectives

A.2 Conferences and events

A.1 Aims and objectives

The Communications Plan is based on a set of channels addressing distinct veraPDF stakeholder groups,
(see CE 1 Stakeholders). Table 1 details the means by which the veraPDF Consortium’s channels will
reach their respective audiences.

Table 1: Channels for veraPDF communications with stakeholders

Channel Stakeholders Description Reach (2015-01)

Websites All The veraPDF Consortium will build and
maintain a dedicated web presence at
http://verapdf.org/ to host all other online
sources (mailing lists, blogs, software
infrastructure, etc.). The website will be
produced by a professional design
agency.

[to be determined]

All An online demonstrator of the veraPDF
Conformance Chcker at
http://demo.verapdf.org/ (see Annex F)

[to be determined]

Industry Web content rooted at
http://www.pdfa.org/veraPDF informing
visitors about industry support for
veraPDF

PDFA website
averages c.16,000
users/month

Industry
partners

The websites of PDF Association
members and Partner Organizations may
be used to promote veraPDF

[to be determined]

Likely to be broad,
based on users of
partner websites

Memory
institutions

Web content rooted at
http://openpreservation.org/about/projects/
verapdfa/ to provide information about the
project in the context of other OPF activity
(interest groups, events, software, etc.)

OPF website
averages c.3,000
users/month

http://verapdf.org/
http://demo.verapdf.org/
http://demo.verapdf.org/
http://www.pdfa.org/veraPDF
http://www.pdfa.org/veraPDF
http://www.pdfa.org/pdf-association/members/
http://www.pdfa.org/pdf-association/members/
http://www.pdfa.org/partner-organisations/
http://openpreservation.org/about/projects/verapdfa/
http://openpreservation.org/about/projects/verapdfa/
http://openpreservation.org/about/projects/verapdfa/

139

Channel Stakeholders Description Reach (2015-01)

Blogs All The PREFORMA project has a blog on
the Digital Meets Culture website. We will
produce content for this blog providing
project updates and provide the option to
syndicate blogs from the Open
Preservation Foundation website.

[to be determined]

Analytics to be
sourced from
PREFORMA

Industry The PDF Association website hosts
several news and other blogs, and actively
promotes this content on LinkedIn, Twitter
and other social media platforms. In
addition, participating vendors will find it in
their interest to promote information and
awareness of veraPDF in their own
communications.

[to be determined]

Likely to be broad;
varies based on
degree of industry
participation in the
project.

Memory
institutions

The Open Preservation Foundation
website blogging platform will provide
progress updates and discuss issues of
interest to memory institutions

Views for blog
posts in the range
several hundred to
a few thousand

Mailing lists All but
customers

Dedicated mailing lists to allow testers and
then users to remain current with veraPDF
news and developments

[to be determined]

Industry The mailing list of the PDF Association
PDF Validation TWG (as of 2015-02-06).

48 subscribers
(from 28
companies)

Industry The mailing list of the PDF Association
membership (as of 2015-02-06)

426 subscribers
(from 106
companies)

Memory
institutions

Open Preservation Foundation mailing
lists for members and digital preservation
community

707 subscribers
(OPF community);
1,483 subscribers
(DPC community)

Social
media

All The veraPDF Consortium will use the
#veraPDF hashtag on social media, and
will drive content with a dedicated Twitter
account

[to be determined]

Analytics will be
monitored for use
of the hashtag

Industry https://twitter.com/PDFAssociation 290 followers

Memory
institutions

https://twitter.com/openpreserve 960 followers

http://www.digitalmeetsculture.net/category/topic/preforma-news/
https://twitter.com/PDFAssociation
https://twitter.com/openpreserve

140

Channel Stakeholders Description Reach (2015-01)

Webinars Industry, 3rd
party
standards

The PDF Association held two webinars
for PDF Association members on 2014-
11-26 and 2014-12-02 to introduce
veraPDF and the PDF Validation TWG.
Several webinars promoting veraPDF will
be held in Phase 2.

Over 60 attendees
in total; 24 views of
the recording as of
2015-02-06

PDF Association educational and industry
news webinars for members and the
public

Periodic, with 10-
35 attendees

Memory
institutions

Open Preservation Foundation held a
webinar for members in February 2015 to
present the functional and technical
specifications. Several webinars
promoting veraPDF will be held in Phase
2.

8 attendees (from
8 institutions) plus
views of the
recording (via
email, not tracked)

Promo
material

All Brochures, T-shirts, contributor awards
and other collateral as deemed necessary. [to be determined]

Stakeholders
interacting directly
with the project

Publications All Consortium partners will publish papers
and articles at selected conference or
relevant academic journals, including a
new edition of PDF/A in a Nutshell (free to
download) and other distributable
publications and slide templates

Over 10,000
printed copies of
PDF/A in a
Nutshell have been
distributed

Individual
contacts

Industry

Memory
institutions

3rd party
communities

Commercial
customers

veraPDF Consortium members, especially
PDF Association and Open Preservation
Foundation Executive Directors, will
engage individual stakeholders and
customers, including government agency
representatives, with emails, phone calls
and in-person meetings

[to be determined]

Responsive to
particular need

A.2 Conferences and events

The Communications Plan includes resources for marketing veraPDF at conferences, workshops and
other events (see CE 2 Community development activities). Table 3 details existing and planned events by
which the veraPDF Consortium’s channels will reach their respective audiences.

http://www.pdfa.org/2013/05/pdfa-in-a-nutshell-seven-years-of-expertise-in-seventeen-pages/

141

PREFORMA Evaluation Criteria

D8.1 (vi) marketing at conferences: technology providers market the reference implementation
and conformance checker at conference for professional networks of developers and digital
preservationists;

Table 2: In-person events in which veraPDF will be actively promoted.

Channel Audience Description / Example Reach

Conferences Industry The PDF Association will hold two
technical conferences in 2015 with
sessions on veraPDF (June 2015 in
Cologne, Germany and October, 2015 in
San Jose, California). veraPDF
information and updates will be a regular
fixture at future PDF Association events

Developers (not only PDF
Association members) in
Europe and North America.
Recordings of VeraPDF
sessions will be made
public and promoted

The biannual ISO 19005 and ISO 32000
Committees meetings

ISO committee members

3rd party vendor-oriented events in which
the PDF Association has previous or
planned participation, including AIIM,
CeBIT, LegalTech, Document Strategy
Forum, Xplor International and others

Implementers of PDF
software in document
management, transactional
processing and more

The PDF Association Executive Director
presented a paper on PDF/A validation at
iPres 2014

Professional digital
preservationists

Memory
institutions

Open Preservation Foundation will
submit papers to digital preservation
conferences, including
- iPres 2015 in Chapel Hill, US
- Scientific Archivists Group conference
in Cardiff, UK
- Digital Library conference, Slovakia

International digital library
and preservation
community

Commercial
customers

User-oriented “PDF Day” and similar
events at 3rd party forums. Three such
events were conducted in 2014.

Users of PDF and PDF-
enabled software

Workshops Industry The PDF Association will hold
educational workshops in Phase 2 to
encourage vendor participation and
adoption.

PDF software developers

Memory
institutions

Open Preservation Foundation will hold
requirements workshops early in Phase 2
to gather policy requirements. A group of
contributors and evaluators will be
identified to work with veraPDF on
creating Policy Profiles, providing test
files, and testing the software.

Larger and smaller memory
institutions

142

Channel Audience Description / Example Reach

Webinars Industry PDF Association informational and
industry news webinars for members.

106 member companies of
the PDF Association

Memory
institutions

Open Preservation Foundation webinars
for members and the digital preservation
community (free to attend).

Larger and smaller memory
institutions

Commercial
customers

During Phase 2 the PDF Association will
hold educational webinars and present at
vertical industry events in to encourage
customer awareness.

PDF software implementers
and end users

143

Annex B. Technical Milestones and Deliverables
B.1 Phase 1 planning

B.2 Phase 2 Planning

B.1 Phase 1 planning
Milestone Dates Description Deliverables
M1 28/02/2015 End of Phase 1
 16/04/2015 Start of Phase 2, start of 1st

prototyping phase

M2.1 15/07/2015 Internal checkpoint during 1st
prototyping phase

Generic veraPDF Validation Model

PDF Parser (Prototype)
Machine-readable Reports (RC)

PDF Features Report (Prototype)

Collect Institutional Policy
requirements

3rd party Integration (Interface)

Shell (Requirements)

Test Corpora (PDF/A-1)

M2.2 30/10/2015 End of 1st prototyping phase,
start of redesign phase

PDF Parser (RC)

Conformance Checker (PDF/A-1b)

PDF Features Report (RC)

Metadata Fixer (Prototype)

Policy Checks (Prototype)

Test profiles for Institutional Policy
requirements

Language Packs support

Human-readable Reports (HTML5)

3rd party Integration (Prototype)

Shell (Prototype)

Test Corpora (Internal Review)

144

Milestone Dates Description Deliverables
M2.3 28/02/2016 End of redesign phase, start of

2nd prototyping phase
Institutional Policy Requirements
(OPF Review)

Test Corpora (PDF Association
Review)

M2.4 20/12/2016 End of Phase 2 (also end of 2nd
prototyping phase)

Conformance Checker (RC)

Metadata Fixer (RC)

Policy Checks (RC)

Human-readable Reports (PDF)

Shell (RC)

Integration PREFORMA Partners

Test Corpora (RC)

Institutional Policy Requirements
(RC)

B.2 Phase 2 Planning
ID Story / Task Depends on Milestone Notes
1 Generic Model implementation
1.1 Parsing the model description M2.1
1.2 Helper classes to access all information on

the model: type hierarchy, properties,
associations

1.1 M2.1

1.3 Parsing the validation profile M2.1
1.4 Generic validation algorithm: navigate

through all objects starting from the root
object and following all association rules

1.2, 1.3 M2.1

1.5 Evaluation of conditional expressions 1.2 M2.1
1.6 Message generation 1.2, 1.3 M2.1
1.7 Global storage (variables) support 1.3 M2.2
2 Implementation of PDF Parser
2.1 Define the PDF Model in the formal syntax M2.1
2.2 PDFBox based implementation of the PDF

Parser

2.2.1 Implementation of CosObject types (all
properties and associations)

 M2.1

2.2.2 Implementation of PDObject types for
PDF/A-1b

 M2.1

2.2.3 Implementation of PDObject types for all
PDF/A Flavors

2.2.1, 2.2.2 M2.2

145

ID Story / Task Depends on Milestone Notes
2.2.4 Implementation of Operator types for

PDF/A-1b
 M2.1

2.2.5 Implementation of Operator types for all
PDF/A Flavors

2.2.1, 2.2.4 M2.2

2.2.6 Implementation of External types for all
PDF/A Flavors

 M2.2

2.3 Greenfield implementation of PDF Parser 2.1 M2.4
3 Implement PDF/A Validation Profiles
3.1 Prototype COS Level checks 1, 2.1 M2.1
3.2 Prototype PD Level checks 1, 2.2.1 M2.1
3.3 Prototype checks for Operator types 1, 2.2.4 M2.1
3.4 Prototype checks for External types 1, 2.2.6 M2.2
3.5 Final version of PDF/A-1b profile 3.1-3.4 M2.2
3.6 Final version of PDF/A-1a profile 3.1-3.5 M2.4
3.7 Final version of PDF/A-2b profile 3.1-3.5 M2.4
3.8 Final version of PDF/A-2u profile 3.7 M2.4
3.9 Final version of PDF/A-2a profile 3.6 M2.4
3.10 Final version of all PDF/A-3 profiles 3.7-3.9 M2.4
4 Generate the Machine-readable

Validation Report

4.1 Create Validation Report M2.1
4.2 Prototype PDF Features Report M2.1
4.3 Final version of the PDF Features Report 4.2 M2.2
5 Metadata Fixer implementation
5.1 Prototype Metadata Fixer M2.2
5.2 Final version of Metadata Fixer M2.4
6 Policy Checker implementation
6.1 Support Schematron profiles
6.1.1 Choose between XSLT2, XSLT1, or

javax.xml.validation implementations
 M1

6.1.2 Select small set of policy examples for
implementation

 M2.1

6.1.3 Prototype of Java based Schematron
Validation

6.1.1 M2.2

6.1.4 Test prototype using real institutional policy
requirements

6.3 M2.3

6.1.5 Produce release candidate for Schematron
support

6.1.3 M2.4

6.2 Generate Machine-readable Policy Report 6.1
6.2.1 Define machine readable report format M2.1
6.2.2 Generate MR report from Java prototype 6.1.3 M2.2
6.3 Create test cases representing institutional

policy requirements

6.3.1 Gather requirements from OPF / DPC
membership

 M2.1

146

ID Story / Task Depends on Milestone Notes
6.3.2 Produce test files representing member

requirements
6.3.1 M2.2

7 Human-readable Report generation
7.1 Support TMX-based Language Packs M2.2
7.2 Support Report Templates
7.2.1 HMTL5 reports M2.2
7.2.2 PDF reports M2.4
7.3 Create sample Language Packs M2.4
8 API for third-party plug-ins
8.1 Interface for passing data to the plug-ins

and receiving error code + report
 M2.1

8.2 ICC Profile Validation
8.2.1 Integration of the ICC profile validator from

SmapleICC
8.1 M2.2

8.2.2 Develop veraPDF ICC Validator 8.1 M2.4 Upon budget
availability

8.3 JP2K Validation
8.3.1 Integrate the existing Python validator 8.1 M2.2
8.3.2 Integrate the Validator from OPF partner 8.1 M2.4
8.4 Font Validation
8.4.1 Type1 Validator 8.1 M2.4 Upon budget

availability
8.4.2 CFF Validator 8.1 M2.4 Upon budget

availability
8.4.3 TrueType Validator 8.1 M2.4 Upon budget

availability
8.4.4 OpenType Validator 8.1 M2.4 Upon budget

availability
9 Shell implementation
9.1 Interface for passing data to validators and

receiving error code + report

9.1.1 Draft prototype interface based on API for
plug-ins

 M2.1

9.1.2 Clarify PREFORMA consortium
requirements for a shell

 M2.1

9.2 Implement prototype Shell integrations
9.2.1 Prototype veraPDF integration 3.5, 9.1 M2.3
9.2.2 Prototype ICC validation integration 8.2, 9.1 M2.2
9.2.3 Prototype JP2K validation integration 8.3, 9.1 M2.2
9.3 Integration with other PREFORMA

conformance checkers
9.2 M2.4 Dependent on

other suppliers
10 Test Corpora
10.1 Description of all required test cases M1
10.2 Enhanced corpora for PDF/A-1 M2.1
10.3 Test corpus for PDF/A-2 M2.2
10.4 Test corpus for PDF/A-3 10.3 M2.2

147

ID Story / Task Depends on Milestone Notes
10.5 Test corpus for Tagged PDF M2.2
10.6 Test corpus for Policy Checks 6.3 M2.2
10.7 Test corpus for Metadata Fixer M2.2
10.8 PDF Validation TWG approval for PDF/A

Validation Corpora
10.1-10.5 M2.3

10.9 Publish final approved corpora under open
license

10.1-10.8 M2.4

148

Annex C: PDF/A Test Corpora Analysis
C.1 PDF/A Test Suite

C.2 Tagged PDF Test Suite

C.3 PDF/A “Should” and “May” Clauses

C.1 PDF/A Test Suite
The PDF/A test Suite contains the detailed analysis of all normative PDF/A requirements (all versions and
all levels) formalized in terms of test cases required to verify the definitive Implementation Checker.

It also indicates which of these test cases are covered by the existing test corpora:

● Isartor Test Suite
● Bavaria Test Suite
● BFO Test Suite

All test cases come only with the textual description. Actual test files will be created during Phase 2 of the
PREFORMA project.

The exact meaning of the columns in the table below are:

A. (№:) Sequential number of the test case
B. (Isartor / Bavaria / BFO) The ID of the test file covering this test case (if any).
C. (PDF/A Specification) Reference to the relevant PDF/A Specification section
D. (Description) Relevant clauses in the specifications
E. (Test case) Test case condition
F. (Version / Level) Version (1,2,3) and Level (a,b,u) of PDF/A specification this test case is applicable
G. (Example) A sample for the test PDF document to be case for this test case
H. (Status of Test Case) Indication of whether this test case is positive (pass) or negative (fail)

In total, there are 719 test cases covering all three versions of PDF/A standards.

C.2 Tagged PDF Test Suite
The Tagged PDF Test Suite contains a similar analysis of all “shall” clauses within two sections of PDF
specifications covering the requirements for PDF/A Level A conformance.:

● PDF Version 1.4, Subsection 9.6 “Logical Structure”, Subsection 9.7 “Tagged PDF”
● ISO 32000-1, Subsection 14.7 “Logical Structure”, Subsection 14.8 “Tagged PDF”

Similar to the PDF/A Test Suite it contains the following data (columns of the table):

A. (№:) Sequential number of the test case
B. (ISO 32000-1) Reference to the relevant section of ISO 32000-1 Specification (the same clauses do

exist also in PDF 1.4 Specification).
C. (Description) Relevant clauses in the specifications
D. (Policy) Identification of the validation policy (Ignore / Machine /Human). “Ignore” value means that

this clause is either generic and does not require any validation or refers to the conforming reader.
“Machine” value indicates that this clause may be validated in an algorithmic way without human
intervention. “Huma” means that validation of this clause requires human intervention.

E. (Test case) Test case condition
F. (Status of Test Case) Indication of whether this test case is positive (pass) or negative (fail)

In total there are 110 test cases including 69 cases with “Machine” policy.

http://www.pdfa.org/2011/08/isartor-test-suite/
http://www.pdflib.com/knowledge-base/pdfa/validation-report/
https://github.com/bfosupport/pdfa-testsuite/

149

C.3 PDF/A “Should” and “May” Clauses
Finally, we also analyse all “should” and “may” clauses in PDF/A specifications and list the PDF Features
we will include into the PDF Feature Report so that these clauses can be verified as a part of Policy
Checks.

The report on “Should” and “may” clauses contains the following data (columns of the table):

A. (№:) Sequential number of the test case
B. (Section) Reference to the relevant section of PDF/A Specifications
C. (Description) Relevant clauses in the specification
D. (Clause type) Identification of the clause type (May, Should, Conforming reader, Conforming writer)
E. (Policy) Identification of the validation policy (Ignore / Machine /Human). “Ignore” value means that

this clause is either generic and does not require any validation or refers to the conforming reader.
“Machine” value indicates that this clause may be validated in an algorithmic way without human
intervention. “Huma” means that validation of this clause requires human intervention.

F. (PDF Feature) The relevant data of the PDF Features report

In total there are 94 clauses identified within all PDF/A-1, 2, 3 Specifications.

The complete Test Corpus report is presented in the three Excel spreadsheets attached to this Report.
Each of the spreadsheets covers one of the above parts of the Test Corpus report.

150

Annex D: PDFBox Feasibility Study
D.1 Summary and recommendations

D.2 Legal information

D.3 Versions and update policy

D.3.1 Version 2.0

D.4 PDFBox open source project analysis

D.4.2 PDFBox and Git/GitHub

D.4.2.1 Candidate process for working with PDFBox mirror

D.4.3 Continuous integration & static code analysis

D.4.3.1 Travis-CI

D.4.3.2 OPF Jenkins

D.4.3.3 OPF Sonar

D.4.4 Code quality

D.4.4.1 Key metrics

D.4.4.2 Cross project comparison

D.4.5 PDFBox Analysis

D.4.5.1 PDFBox Modules

D.4.5.2 Analysis of VeraPDF dependencies

D.5 PDFBox Preflight feasibility study

D.5.1 PDFBox Preflight top level architecture

D.5.2 PDFBox Preflight analysis

D.5.3 PDFBox Preflight font validation

D.6 XMPBox

D.6.1 Supported XMP schemas

D.7 PDF Document I/O

D.7.1 PDF stream assumptions in PDFBox

D.7.2 PDF parser

D.8 Supported stream filters

151

D.1 Summary and recommendations
The overall quality of the PDFBox libraries considered for use is acceptable but we’ll be taking precautions,
for example adding unit tests for crucial PDFBox parsing dependencies, using code coverage tools to help
isolate untested code.

The XMPBox library is well tested and re-implementing would be a case of re-inventing a very serviceable
XMP wheel. Preflight PDF/A compliance checks could be used adding unit tests for key checks we depend
upon.

The adoption of Fontbox is uncertain, test coverage is poor and there’s a large code base that’s quite
interdependent. Testing code like this can be harder than rewriting it. Under the circumstances we’ll
proceed with suspicious caution.

D.2 Legal information
PDFBox is licensed under the Apache License, Version 2.0. Apache provides an analysis of software
dependencies1 which we refer to in Annex E: License Compatibility. Please refer to that document for the
full legal analysis of license compatibility.

D.3 Versions and update policy
Current stable version: 1.8.7

PDFBox 1.8.8 release: 09.12.2014

Previous versions: http://archive.apache.org/dist/pdfbox/

Average update rate: ~3 releases per year

Project page https://pdfbox.apache.org/

API documentation http://pdfbox.apache.org/docs/1.8.6/javadocs/

Source code http://svn.apache.org/viewvc/pdfbox/

Mailing list https://pdfbox.apache.org/mailinglists.html

Issue tracking https://issues.apache.org/jira/browse/PDFBOX

Static code analysis https://analysis.apache.org/dashboard/index/org.apache.pdfbox:pdfbox-
reactor?did=9

1 https://analysis.apache.org/plugins/resource/58986?page=org.sonar.plugins.design.ui.libraries.LibrariesPage

http://www.apache.org/licenses/LICENSE-2.0
http://archive.apache.org/dist/pdfbox/
https://pdfbox.apache.org/
http://pdfbox.apache.org/docs/1.8.6/javadocs/
http://svn.apache.org/viewvc/pdfbox/
https://pdfbox.apache.org/mailinglists.html
https://issues.apache.org/jira/browse/PDFBOX
https://analysis.apache.org/dashboard/index/org.apache.pdfbox:pdfbox-reactor?did=9
https://analysis.apache.org/dashboard/index/org.apache.pdfbox:pdfbox-reactor?did=9

152

D.3.1 Version 2.0

New features:

● Completely rebuilt font parser.
● Pattern rendering
● Pages resource caching
● Font embedding
● Parsing
● Page Tree
● Text extraction on Java 8

All this changes are affecting pdfbox api.

Expected release date: first half of 2015 based on the number of remaining tasks in Jira and the average
time it takes to resolve them.

D.4 PDFBox open source project analysis
This section presents an overview and analysis of the PDF Box project, concentrating on the code base.
Currently the information comes from two publicly available sources:

● the Open Hub page for PDFBox, Open Hub provide metrics and analysis for the comparison of
open source projects.

● Apache’s Sonar instance for the PDFBox project which provides static analysis of the PDFBox code
base.

For context we make comparisons with two other open source Java projects:

● Apache Tika, a content/metadata extraction application that calls PDFBox amongst others; and
● Apache Maven, a production class Java software project management tool used by developers

everywhere. I’d expect this project to follow best practises and have strong metrics as it’s a tool
written by developers, for developers.

Both projects are established and have Java code bases of significant size. Tika is expected to provide a
“lower bound” and is not exemplary with respect to unit test coverage and elegance of design. Maven
handles a complex task reliably with a flexible architecture that’s encouraged the growth of a huge
ecosystem of Maven plugins. The expectation is that Maven will provide the “upper bound” exemplar of a
high quality project.

The meaning of the particular measures compared and why they were chosen will be given in context.
Some of the measures are inexact and aren’t to be taken literally, for example Open Hub’s estimations of
effort used are always alarmingly high. Others, like unit test coverage, offer a more reliable and objective
indicator of software quality.

D.4.2 PDFBox and Git/GitHub

VeraPDF fork of PDFBox here: https://github.com/verapdf/pdfbox, this was forked from the official Apache
mirror: https://github.com/apache/pdfbox, the upstream repository. The Apache mirror is a mirror of the
official Apache Git repo: git://git.apache.org/pdfbox.git that in turn mirrors the Apache PDFBox SVN
repository. Because of it’s SVN roots the git repo has no master branch, the conventional main branch for
git repos. Instead the git repo follows the SVN convention of using trunk as its main branch.

https://issues.apache.org/jira/browse/PDFBOX-2430?jql=project%20%3D%20PDFBOX%20AND%20priority%20in%20(Blocker%2C%20Critical)%20AND%20resolution%20%3D%20Unresolved%20AND%20fixVersion%20%3D%202.0.0%20ORDER%20BY%20priority%20DESC
https://www.openhub.net/p/pdfbox
https://analysis.apache.org/dashboard/index/org.apache.pdfbox:pdfbox-reactor
http://tika.apache.org/
http://maven.apache.org/
https://github.com/verapdf/pdfbox
https://github.com/apache/pdfbox

153

D.4.2.1 Candidate process for working with PDFBox mirror

A working assumption is that we’ll only be submitting bug fixes for PDFBox. A fix should be fine grained
and raised as an issue on PDFBox JIRA.

● trunk is reserved for synch from upstream;
● verapdf add master branch reserved our production HEAD, normally only updated via pull requests;

and
● all work performed on development branches named after issue addressed.

Developers create a branch per-issue worked on. First implement a failing unit test to illustrate the issue
clearly, then the fix. Once finished (tests passing) pull and merge current master to their branch to catch
any changes. It’s the VeraPDF teams responsibility to sort out any merge conflicts, though we may have to
enlist upstream help from time to time.

The above is simply a re-working of the standard GitHub workflow2 adapted to account for the differences
in convention between SVN and Git.

D.4.3 Continuous integration & static code analysis

D.4.3.1 Travis-CI

The project already had a Travis-CI build file, added the VeraPDF instance: https://travis-
ci.org/verapdf/pdfbox. Amended the build to exclude the GitHub pages branch, and to add an OpenJDK 7
build to the existing Oracle 7 and OpenJDK 6 builds. These all built straightforwardly using the standard
Travis Maven setup.

D.4.3.2 OPF Jenkins

Added PDFBox as a nightly build on the OPF Jenkins server: http://jenkins.opf-labs.org/job/PDFBox/. This
uses Oracle JDK 7 to build PDFBox. Initially a few tests failed due to the lack of Java cryptographic
extensions. Installing these still left some skipped tests. The travis build suggests installing the fonts-
liberalism package for Ubuntu boxes. The OPF Jenkins server is an Ubuntu server and all tests run and
pass once the fonts-liberalism package was installed,

D.4.3.3 OPF Sonar

The nightly Jenkins build also triggers the OPF sonar server to perform static analysis. This crucially
includes unit test coverage, not available on the Apache instance. http://sonar.opf-
labs.org/dashboard/index/6820

D.4.4 Code quality

D.4.4.1 Key metrics

Static code quality analysis is an inexact science. While numeric measures don’t give a complete picture
there are a few key metrics that can provide a good initial indicator. We’ve used four metrics for assessing
code quality and a simple source line count to provide an indicator or project size. Some of them provide
multiple measures, the rest of this section describes the metrics used and the rationale for choosing them.

D.4.4.1.5 Project size

This isn’t a measure of quality, but it needs to be considered when comparing quality metrics.

2 https://guides.github.com/introduction/flow/index.html

https://travis-ci.org/verapdf/pdfbox
https://travis-ci.org/verapdf/pdfbox
http://jenkins.opf-labs.org/job/PDFBox/
http://sonar.opf-labs.org/dashboard/index/6820
http://sonar.opf-labs.org/dashboard/index/6820

154

There’s a variety of measures, the meaning of many are obvious:

● lines of code excluding blank lines:
● number of files;
● number of classes;
● number of functions; and
● development effort in man months.

The last is calculated by an Open HUB FOSS software portal3 and is not meant to be taken literally.

D.4.4.1.2 Unit test coverage

Unit test coverage, or code coverage calculates the degree that the source code of an application is tested
by a test suite. We’ll look at three coverage measures and the overall success:

● Condition coverage measures the percentage of logical paths through the code that are executed
by the tests.

● Line coverage measures the percentage of source code lines executed by the tests.
● Overall coverage combines the above 2 measures to offer a different, arguably more accurate,

view.
● Unit test success percentage, what percentage of the unit tests passed, this should always be close

to 100%.

A production ready coverage figure should be 80% or more, i.e. 4/5ths of the code is tested automatically.
100% coverage is usually impractical for non-trivial projects where generated byte-code and environment
specific concerns generally get in the way. Code with less than 60% coverage is likely to prove unreliable
and require patching if used in production systems. Less than 40% coverage probably means implementing
a better test suite or developing from scratch.

Test success percentage should always be checked, 90% test coverage is of little use if 50% or more of the
tests fail. Although it’s not unusual for projects to occasionally skip a few failing test this should never be
more than a few (< 5%) and for a short time.

D.4.4.1.3 Comment coverage

These measures assess the degree to which the code is commented. This is more subjective and does
little to measure the quality of the comments. The measures used are:

● Comment density which is just the percentage of comment lines compared to the total number of
non-blank lines.

● Public documented API coverage measures the percentage of public classes and methods that are
documented.

Comment density alone isn’t greatly informative, the average across open source projects is around 30%.
Much higher figures aren’t guarantee of quality and may simply indicate a verbose commenting style.
Public API coverage is more telling. By definition these are the parts of the code that the developer is
expecting other developers to use. ALL public methods and classes should be documented, preferably with
a standard tool that can be used to create documentation sites, e.g. JavaDoc4 for Java. This figure should
be at 100% for all projects barring very early prototypes. If less than 50% of the public API has been
commented it’s unlikely to prove the only thing that the developers didn’t stay on top of.

3 https://www.openhub.net/
4 http://www.oracle.com/technetwork/articles/java/index-jsp-135444.html

155

D.4.4.1.4 Complexity

Complexity measures, unsurprisingly, give an indication of the complexity of a piece of software. We’re
using the cyclomatic complexity5 built into Sonar’s Java analysis module. This directly measured the
number of paths through the source code and calculates a figure. Every conditional branching statement
and return statement increase the Cyclomatic dependency measure. This means that the larger a code
base becomes the more the figure increases. To allow comparisons some other measures are calculated:

● Total complexity is the headline figure described above.
● File complexity divides the total by the number of files in the code base.
● Class complexity divides the total by the number of classes in the code base.
● Function complexity divides the total figure by the number of functions in the project.

The three averaged figures allow comparison across projects and indicate the degree to which the
complexity has been divided into manageable modules. They’re listed in generally decreasing numerical
value. This is not guaranteed but as the units are usually aggregated upwards, i.e. functions/methods make
up classes and files usually contain at least one class, a dramatic change in ordering would indicate a
suspect design. The figure for functions should be less than 5, double figures are usually alarming. The
figures for classes and files are more variable but figures over 30 generally indicate over-complex units.

D.4.4.1.5 Technical debt

This quantifies the refactoring effort required to right the wrongs detected by static analysis. There are two
measures:

● Effort required in man months.
● Number of issues detected by static analysis, each issue is a assigned a severity indicator: Blocker,

Critical, Major, Minor, Info. The ordering is self explanatory.

The measures are provided for comparison but automated effort calculations of this type aren’t renowned
for their accuracy.

D.4.4.2 Cross project comparison

The figures presented below were taken from recent snapshot builds of the projects, in December 2014.

D.4.4.2.1 Size

The number of lines, files, classes, and functions

 Apache Maven Apache Tika Apache PDFBox

Line Count 58467 39933 101894

File Count 677 387 923

Class Count 753 514 979

Function Count 4655 2717 7171

Effort Estimate 87 Years 18 Years 30 Years

The first thing to note is that PDFBox is the largest of the three projects by all measures except estimated
effort. Apache Tika is the smallest project of the three according to all measures.

5 http://en.wikipedia.org/wiki/Cyclomatic_complexity

156

D.4.4.2.2 Test and comment coverage

These have been grouped together as they’re the more objective measures of software quality. All
developers should be familiar with the concepts as they’re widely recognised as best practise. Projects that
have problems here are likely to be struggling on other fronts.

 Apache Maven Apache Tika Apache PDFBox

Condition Coverage 31.0% 58.9% 27.9%

Line Coverage 39.3% 64.8% 35.4%

Overall Coverage 36.7% 62.9% 33.3%

% Tests Succeeded 100% 100% 100%

Comment Coverage 21.4% 21.9% 20.1%

Public API Coverage 31.2% 45.8% 86.9%

Apache Tika is the clear leader in terms of test coverage with Maven and PDFBox showing similar results.
One issue is that the entire project code base is analysed here. Most projects have core code and this
tends to be more thoroughly tested. We’ll look again at this when we decompose PDFBox a little more.

D.4.4.2.3 Complexity and technical debt

 Apache Maven Apache Tika Apache PDFBox

Total Complexity 10351 9047 8074

File Complexity 15.3 23.4 19.7

Class Complexity 13.7 17.6 18.6

Func Complexity 2.2 3.3 2.5

Number of Issues 1533 9839 8074

Technical Debt 262d 698d 841d

157

D.4.5 PDFBox Analysis

In this section we’ll take a look at the individual PDFBox modules. The figures given in the last section
cover all PDFBox modules and are an overall average. In practise VeraPDF won’t utilise every PDFBox
module for PDF/A validation. The first section describes the PDFBox modules, their function and the
internal dependencies between them. It concludes with an assessment of the modules that VeraPDF will
depend upon. The following sub-section looks at these modules listing the same measures used in section
4.4 for each.

D.4.5.1 PDFBox Modules

Each PDFBox module is listed along with a brief description.

D.4.5.1.1 PDFBox Reactor

This is the top level Maven project descriptor and builds the other modules. It doesn’t carry any code or
tests, it does manage dependencies and compilation of the whole project. For purposes of code analysis
it’s redundant.

D.4.5.1.2 PDFBox Parent

Another Maven project description module the parent pulls in the main apache Maven parent and lists
project details. The parent doesn’t contain any compilable code and is exempt from static analysis.

D.4.5.1.3 PDFBox Application

This is a bundle module used to create the PDFBox command line application. This is another module that
doesn’t hold any code and is irrelevant for static analysis purposes.

D.4.5.1.4 Preflight Application

A Maven bundle module for the PDFBox Preflight PDF/A validation command line application. Once again
the module doesn’t hold any code and will be ignored in our analysis.

D.4.5.1.5 PDFBox

The core PDFBox parsing library and home to many of the important abstractions in the PDFBox code.
VeraPDF will certainly depend on the PDFBox module and, by extension, any modules it depends on.

D.4.5.1.6 Fontbox

The PDFBox module that houses the libraries used to obtain low level information from font files. The main
PDFBox module depends upon fontbox making it an indirect dependency for veraPDF. It’s also possible
that veraPDF will depend on fontbox directly initially as developing font parsing modules may not be a
primary development priority.

D.4.5.1.7 PDFBox Examples

This is a high level PDFBox module that provides worked examples of how to use the main PDFBox
libraries. It’s depends upon the PDFBox module and doesn’t provide any PDF parsing capabilities.
VeraPDF won’t depend upon the examples module.

D.4.5.1.8 PDFBox Tools

This module provides command line tools for using PDFBox. It depends upon the main PDFBox libraries
but won’t used by veraPDF.

158

D.4.5.1.9 Preflight

The preflight module holds the libraries for PDF/A level one validation. The module includes low level
checks for document characteristics required for validation as well as the validation algorithms. It depends
on the PDFBox library and the xmpbox module (see below). VeraPDF will certainly initially depend upon
the preflight module for low level checks.

D.4.5.1.10 Xmpbox

Xmpbox is a library for parsing Adobe XMP metadata and it’s used by the preflight module for performing
the XMP checks required for PDF/A validation. VeraPDF will depend directly upon xmpbox as it’s XMP
metadata library in addition to any checks called indirectly through the preflight module.

D.4.5.1.11 Summary of veraPDF dependencies

In summary the Apache PDFBox modules and their dependencies exhibit the characteristics of a sensibly
designed project. The function of each module is clear and the dependencies between them show a logical
and clean structure without circular dependencies. This, in turn, means that the modules required by
veraPDF are well defined as shown in the diagram below.

VeraPDF Dependencies

D.4.5.2 Analysis of VeraPDF dependencies

This section presents static code analysis of the PDFBox modules that will be used by VeraPDF as
opposed to overall project averages. This is more relevant than the overall figures and gives a better overall
picture of the code quality of the modules that veraPDF will depend on.

159

D.4.5.2.1 Size

Note that there’s no effort estimate figures for the individual modules as OpenHub don’t provide statistics at
any lower level of granularity than project.

 PDFBox Preflight Fontbox XMPBox

Line Count 61391 10774 13904 7067

File Count 501 116 89 72

Class Count 585 120 115 74

Function Count 4768 589 663 728

D.4.5.2.2 Test and comment coverage

Only overall test coverage statistics and number of tests succeeded were readily available and are shown
below.

 PDFBox Preflight Fontbox XMPBox

Overall Coverage 42.9% 0% 12.2% 80.6%

% Tests Succeeded 100% N/A 100% 100%

Xmpbox is the only module to have exemplary unit test coverage while the main PDFBox module’s
coverage is OK for a project of its size. Coverage for both fontbox and preflight gives cause for concern.
Preflight in particular seems to be a problem but closer investigation reveals that it has unit tests that are
run in a slightly unconventional manner. Preflight is tested against the Isartor PDF/A test Suite6 which is
downloaded and unpacked from the Maven build. It appears that the execution of these tests isn’t picked
up by Sonar analysis, hence the 0% coverage figure. EclEmma7 is an alternative tool that calculates
coverage for code run in the Eclipse IDE. Running preflight’s Isartor based integration tests using EclEmma
reveals that test coverage for the module is actually a much more healthy 62%.

6 http://www.pdfa.org/2011/08/isartor-test-suite/
7 http://www.eclemma.org/

160

D.4.5.2.3 Complexity and technical debt

 PDFBox Preflight Fontbox XMPBox

Total Complexity 11200 2043 2145 1433

File Complexity 22.4 17.6 24.1 19.9

Class Complexity 19.1 17 18.7 19.4

Func Complexity 2.3 3.7 3.2 2

Number of Issues 6306 409 2767 146

Technical Debt 641 74 200 40

161

D.5 PDFBox Preflight feasibility study

D.5.1 PDFBox Preflight top level architecture

Class diagram:

162

Sequence diagram:

D.5.2 PDFBox Preflight analysis

A summary of a study by the Dutch National Library, published in 2009:

● Apache Preflight produces output that is fairly unstructured when used from the command line.
● Apache Preflight was able to identify all documents with encrypted content. However, Preflight

doesn't give any specific information on which specific access restrictions apply (e.g. printing,
copying, text access).

● The detection of non-embedded fonts turned out to be problematic for Apache Preflight. A simple
test file with 1 single font that is not embedded resulted in the following errors : “3.1.3: Invalid Font
definition, They are more than one FontFile”. Although Apache Preflight did pick up a font-related
issue here, the reported error messages are confusing and do not reflect the actual problem.

● The fact that once a violation of the PDF/A1b is detected, this may stop Preflight from any further
processing of that page.

● Lack of sufficient stability.

http://openpreservation.org/system/files/pdfProfilingJvdK19122012.pdf

163

Obviously 5 years of development should bring positive changes to the software, so we’ll perform tests and
codes analysis to check the behavior of Apache Preflight in cases mentioned above:

● Since version 2.0 Apache Preflight includes functionality to generate xml reports
(org.apache.pdfbox.preflight.parser.XmlResultParser) using the org.w3c.dom package. Here’s an
example report for a pdf file with invalid trailer :
<?xml version="1.0" encoding="UTF-8" standalone="no"?>
<preflight name="isartor-6-1-3-t01-fail-a.pdf">

<executionTimeMS>1966</executionTimeMS>
<isValid type="PDF/A1-b">false</isValid>
<errors count="1">

<error count="1">
<code>1.4.1</code>
<details>Trailer Syntax error, The trailer dictionary doesn't contain ID</details>

</error>
</errors>

</preflight>

● Encryption validation errors remained unchanged : “Syntax error, Cannot decrypt PDF, the
password is incorrect” for documents that require password to open a file and “Trailer Syntax error,
The trailer dictionary contains Encrypt” for others (e.g. printing, copying restrictions).

● Font errors detection and reporting were slightly improved:
○ Non-embedded arial true type font : “Invalid Font definition, Arial: FontFile entry is missing

from FontDescriptor”
○ PostScript Type 1 font 'LuciduxSans-Oblique' not embedded : “Invalid Font definition,

LuciduxSans-Oblique: FontFile entry is missing from FontDescriptor”
○ CID font 'KozMinPro-Regular-Acro' not embedded : “Invalid Font definition, KozMinPro-

Regular-Acro: FontFile entry is missing from FontDescriptor”
○ Standard Type 1 font 'Helvetica' not embedded : “Invalid Font definition, Helvetica: FontFile

entry is missing from FontDescriptor”
○ font 'Arial' for Form XObject not embedded : “Invalid Font definition, Arial: FontFile entry is

missing from FontDescriptor”
○ font 'ZapfDingbats' for field not embedded : “Invalid Font definition, ZapfDingbats: FontFile

entry is missing from FontDescriptor”
○ font 'Helvetica' for Type 3 font glyph not embedded : “Font damaged,

HelveticaCloneT3.winansi: The Resources dictionary of type 3 font contains invalid font”
○ font 'Arial' for tiling pattern not embedded : “Invalid Font definition, Arial: FontFile entry is

missing from FontDescriptor”
● Apache Prefight version 2.0 works with pdf files containing multiple validation problems. Parsing

document with 978 pages (PDF 1.4 spec) shows a huge list of validation errors.
● Apache Preflight version 2.0 seems to be pretty stable. It successfully parses documents containing

one thousand pages. Will test it on synthetic documents containing 100.000 - 3.000.000 pages in
next few days.

164

D.5.3 PDFBox Preflight font validation

Class diagram:

Sequence diagram:

165

The principle PDF/A requirements for embedded font files are:

1. The embedded font shall contain the description of all glyphs used in the PDF document.
2. Widths information for these glyphs shall be consistent between the embedded font program and

the font dictionary in the PDF document.

PDFBox implements these two checks for all file types except for OpenType (not permitted in PDF/A-1
documents, but allowed in PDF/A-2 ad PDF/A-3):

Font type
Incorrect

width check
Missing

glyph check Parsing code

CIDType0 Success Success
org.apache.fontbox.cff.CFFParser,

org.apache.fontbox.cmap.CMapParser

CIDType2 Success Success
org.apache.fontbox.ttf.TTFParser,

org.apache.fontbox.cmap.CMapParser

Type1 Success Success org.apache.fontbox.type1.Type1Parser

Type1 CFF Success Success org.apache.fontbox.cff.CFFParser

TrueType Success Success org.apache.fontbox.ttf.TTFParser

OpenType ? ? org.apache.fontbox.ttf.OTFParser (isn't implemented yet)

D.6 XMPBox

D.6.1 Supported XMP schemas

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

Dublin Core
Schema dc:contributor bag

ProperName ...DublinCoreSchema.CONTRIBUTOR Text Bag

 dc:coverage Text ...DublinCoreSchema.COVERAGE Text Simple

 dc:creator seq
ProperName ...DublinCoreSchema.CREATOR Text Seq

 dc:date seq Date ...DublinCoreSchema.DATE Date Seq

 dc:description Lang Alt ...DublinCoreSchema.DESCRIPTION LangAlt Simple

 dc:format MIMEType ...DublinCoreSchema.FORMAT MIMEType Simple

166

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

Dublin Core
Schema dc:identifier Text ...DublinCoreSchema.IDENTIFIER Text Simple

 dc:language bag Locale ...DublinCoreSchema.LANGUAGE Text Bag

 dc:publisher bag
ProperName ...DublinCoreSchema.PUBLISHER Text Bag

 dc:relation bag Text ...DublinCoreSchema.RELATION Text Bag

 dc:rights Lang Alt ...DublinCoreSchema.RIGHTS LangAlt Simple

 dc:source Text ...DublinCoreSchema.SOURCE Text Simple

 dc:subject bag Text ...DublinCoreSchema.SUBJECT Text Bag

 dc:title Lang Alt ...DublinCoreSchema.TITLE LangAlt Simple

 dc:type bag open
Choice ...DublinCoreSchema.TYPE Text Bag

XMP Basic
Schema xmp:Advisory bag XPath ...XMPBasicSchema.ADVISORY XPath Bag

 xmp:BaseURL URL ...XMPBasicSchema.BASEURL URL Simple

 xmp:CreateDate Date ...XMPBasicSchema.CREATEDATE Date Simple

 xmp:CreatorTool AgentName ...XMPBasicSchema.CREATORTOOL AgentName Simple

 xmp:Identifier bag Text ...XMPBasicSchema.IDENTIFIER Text Bag

 xmp:MetadataDate Date ...XMPBasicSchema.METADATADATE Date Simple

 xmp:ModifyDate Date ...XMPBasicSchema.MODIFYDATE Date Simple

 xmp:Nickname Text ...XMPBasicSchema.NICKNAME Text Simple

 xmp:Thumbnails alt Thumbnail ...XMPBasicSchema.THUMBNAILS Thumbnail Alt

 xmp:Label Text ...XMPBasicSchema.LABEL Text Simple

167

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

XMP Basic
Schema

xmp:Rating Closed Choice
of Integer ...XMPBasicSchema.RATING Integer Simple

 n/a ...XMPBasicSchema.MODIFIER_DATE Date Simple

XMP Rights
Management

Schema
xmpRights:Certifica

te URL ...XMPRightsManagementSchema.CERTI
FICATE URL Simple

 xmpRights:Marked Boolean ...XMPRightsManagementSchema.MARK
ED Boolean Simple

 xmpRights:Owner bag
ProperName

...XMPRightsManagementSchema.OWNE
R ProperName Bag

xmpRights:UsageT

erms Lang Alt ...XMPRightsManagementSchema.USAG
ETERMS LangAlt Simple

xmpRights:WebSta

tement URL ...XMPRightsManagementSchema.WEBS
TATEMENT URL Simple

XMP Media
Management

Schema
xmpMM:DerivedFro

m ResourceRef ...XMPMediaManagementSchema.DERIV
ED_FROM ResourceRef Simple

xmpMM:DocumentI

D URI ...XMPMediaManagementSchema.DOCU
MENTID URI Simple

 xmpMM:History seq
ResourceEvent

...XMPMediaManagementSchema.HISTO
RY

ResourceEve
nt Seq

 xmpMM:LastURL - (deprecated) ...XMPMediaManagementSchema.LAST_
URL URL Simple

xmpMM:ManagedF

rom ResourceRef ...XMPMediaManagementSchema.MANA
GED_FROM ResourceRef Simple

 xmpMM:Manager AgentName ...XMPMediaManagementSchema.MANA
GER AgentName Simple

xmpMM:ManagerV

ariant Text ...XMPMediaManagementSchema.MANA
GERVARIANT Text Simple

 xmpMM:ManageTo URI ...XMPMediaManagementSchema.MANA
GETO URI Simple

168

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

XMP Media
Management

Schema
xmpMM:ManageUI URI ...XMPMediaManagementSchema.MANA

GEUI URI Simple

xmpMM:RenditionC

lass RenditionClass ...XMPMediaManagementSchema.RENDI
TIONCLASS

RenditionClas
s Simple

xmpMM:Rendition

Of - (deprecated) ...XMPMediaManagementSchema.RENDI
TION_OF ResourceRef Simple

xmpMM:RenditionP

arams Text ...XMPMediaManagementSchema.RENDI
TIONPARAMS Text Simple

 xmpMM:SaveID - (deprecated) ...XMPMediaManagementSchema.SAVE_
ID Integer Simple

 xmpMM:VersionID Text ...XMPMediaManagementSchema.VERSI
ONID Text Simple

 xmpMM:Versions seq Version ...XMPMediaManagementSchema.VERSI
ONS Version Seq

 xmpMM:InstanceID URI ...XMPMediaManagementSchema.INSTA
NCEID URI Simple

 n/a
...XMPMediaManagementSchema.ORIGI

NALDOCUMENTID Text Simple

 n/a
...XMPMediaManagementSchema.INGRE

DIENTS Text Bag

XMP Basic Job
Ticket Schema xmpBJ:JobRef bag Job ...XMPBasicJobTicketSchema.JOB_REF Job Bag

XMP Paged-
Text Schema

xmpTPg:MaxPage
Size Dimensions ...XMPageTextSchema.MAX_PAGE_SIZE Dimensions -

 xmpTPg:NPages Integer ...XMPageTextSchema.N_PAGES Integer -

Adobe PDF
Schema pdf:Keywords Text ...AdobePDFSchema.KEYWORDS Text Simple

 pdf:PDFVersion Text ...AdobePDFSchema.PDF_VERSION Text Simple

 pdf:Producer AgentName ...AdobePDFSchema.PRODUCER Text Simple

169

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

Photoshop
Schema

photoshop:Authors
Position Text ...PhotoshopSchema.AUTHORS_POSITI

ON Text Simple

photoshop:Caption

Writer ProperName ...PhotoshopSchema.CAPTION_WRITER ProperName Simple

photoshop:Categor

y Text ...PhotoshopSchema.CATEGORY Text Simple

 photoshop:City Text ...PhotoshopSchema.CITY Text Simple

 photoshop:Country Text ...PhotoshopSchema.COUNTRY Text Simple

 photoshop:Credit Text ...PhotoshopSchema.CREDIT Text Simple

photoshop:DateCre

ated Date ...PhotoshopSchema.DATE_CREATED Date Simple

photoshop:Headlin

e Text ...PhotoshopSchema.HEADLINE Text Simple

photoshop:Instructi

ons Text ...PhotoshopSchema.INSTRUCTIONS Text Simple

 photoshop:Source Text ...PhotoshopSchema.SOURCE Text Simple

 photoshop:State Text ...PhotoshopSchema.STATE Text Simple

photoshop:Supple
mentalCategories Text ...PhotoshopSchema.SUPPLEMENTAL_C

ATEGORIES Text Bag

photoshop:Transmi

ssionReference Text ...PhotoshopSchema.TRANSMISSION_R
EFERENCE Text Simple

 photoshop:Urgency Integer ...PhotoshopSchema.URGENCY Integer Simple

 n/a ...PhotoshopSchema.ANCESTORID URI Simple

 n/a ...PhotoshopSchema.COLOR_MODE Integer Simple

 n/a
...PhotoshopSchema.DOCUMENT_ANCE

STORS Text Bag

170

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

Photoshop
Schema photoshop:History ...PhotoshopSchema.HISTORY Text Simple

 n/a ...PhotoshopSchema.ICC_PROFILE Text Simple

 n/a ...PhotoshopSchema.TEXT_LAYERS Layer Seq

Exiff Schema for
TIFF Properties tiff:Artist ProperName ...TiffSchema.ARTIST ProperName Simple

 tiff:BitsPerSample seq Integer ...TiffSchema.BITS_PER_SAMPLE Integer Seq

 tiff:Compression Closed Choice
of Integer ...TiffSchema.COMPRESSION Integer Simple

 tiff:Copyright Lang Alt ...TiffSchema.COPYRIGHT LangAlt Simple

 tiff:DateTime Date ...TiffSchema.DATE_TIME Date Simple

tiff:ImageDescriptio

n Lang Alt ...TiffSchema.IMAGE_DESCRIPTION LangAlt Simple

 tiff:ImageLength Integer ...TiffSchema.IMAGE_LENGHT Integer Simple

 tiff:ImageWidth Integer ...TiffSchema.IMAGE_WIDTH Integer Simple

 tiff:Make ProperName ...TiffSchema.MAKE ProperName Simple

 tiff:Model ProperName ...TiffSchema.MODEL ProperName Simple

 tiff::Orientation Closed Choice
of Integer ...TiffSchema.ORIENTATION Integer Simple

tiff:PhotometricInter

pretation
Closed Choice

of Integer
...TiffSchema.PHOTOMETRIC_INTERPR

ETATION Integer Simple

tiff:PlanarConfigura

tion
Closed Choice

of Integer
...TiffSchema.PLANAR_CONFIGURATIO

N Integer Simple

tiff:PrimaryChromat

icities seq Rational ...TiffSchema.PRIMARY_CHROMATICITI
ES Rational Seq

171

PDF allowed
XMP

schemas

Schema
properties Value Type

XMPBox class field

(org.apache.xmpbox.schema.)

Preflight
value type

(org.apache
.xmpbox.ty
pe.Types)

Cardinality

(org.apache
.xmpbox.ty
pe.Cardinali

ty)

Exiff Schema for
TIFF Properties

tiff:ReferenceBlack
White seq Rational ...TiffSchema.REFERENCE_BLACK_WHI

TE Rational Seq

 tiff:ResolutionUnit Closed Choice
of Integer ...TiffSchema.RESOLUTION_UNIT Integer Simple

tiff:SamplesPerPixe

l Integer ...TiffSchema.SAMPLES_PER_PIXEL Integer Simple

 tiff:Software AgentName ...TiffSchema.SOFTWARE AgentName Simple

tiff:TransferFunctio

n seq Integer ...TiffSchema.TRANSFER_FUNCTION Integer Seq

 tiff:WhitePoint seq Rational ...TiffSchema.WHITE_POINT Rational Seq

 tiff:XResolution Rational ...TiffSchema.XResolution Rational Simple

tiff:YCbCrCoefficien

ts seq Rational ...TiffSchema.YCB_CR_COEFFICIENTS Rational Seq

tiff:YCbCrPositionin

g
Closed Choice

of Integer ...TiffSchema.YCB_CR_POSITIONING Integer Seq

tiff:YCbCrSubSamp

ling
Closed Choice
of seq Integer ...TiffSchema.YCB_CR_SUB_SAMPLING Integer Simple

 tiff:YResolution Rational ...TiffSchema.YRESOLUTION Rational Simple

EXIF Schema
for EXIF-specific

Properties
...TiffSchema

PDF/A
Extension
Schema

Container
Schema

pdfaExtension:sche
mas bag Schema ...PDFAExtensionSchema.SCHEMAS PDFASchem

a Bag

172

D.7 PDF Document I/O

D.7.1 PDF stream assumptions in PDFBox

The PDF stream access in PDFBox is implemented via the class PushBackInputStream .

PushBackInputStream is a binary stream an extension of java.io.PushbackInputStream, that adds
functionality for seeking through the PDF input stream and some little features simplifying parsing PDF (e.g.
peek method that allows to read next byte from stream but keep current offset position untouched)
document. Supported operations include seek, and we can add support for mark and reset operations. The
strategy to deal with non-seekable streams will be discussed.

D.7.2 PDF parser

PDFBox contains two different implementations of PDFParser:

● PDFParser doesn’t assume that PDF Document complies to PDF 1.7 or ISO 32000-1:2008
specification and parses PDF Document sequentially, ignoring contents of xref table.

● NonSequentialPDFParser is more recent than PDF Parser and assumes that the PDF Document
has a low level object structure conformant to PDF.1.7 (ISO 32000-1:2008), so this parser will be
used during validation.

http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/io/PushBackInputStream.html
https://docs.oracle.com/javase/7/docs/api/java/io/PushbackInputStream.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/pdfparser/PDFParser.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/pdfparser/NonSequentialPDFParser.html

173

D.8 Supported stream filters

Name PDFBox class
PDFBox
support

Supported
decode params PDF/A-1 PDF/A-2 PDF/A-3

ASCIIHexDecode

org.apache.pdf
box.filter.ASCII

85Filter
Decode and

encode
No params
available

ASCII85Decode

org.apache.pdf
box.filter.ASCII

HexFilter
Decode and

encode
No params
available

LZWDecode

org.apache.pdf
box.filter.LZW

Filter
Decode and

encode
Predictor, Colors

(complete support)
Not

permitted
Not

permitted
Not

permitted

FlateDecode

org.apache.pdf
box.filter.Flate

Filter
Decode and

encode
Predictor, Colors

(complete support)

RunLengthDecod
e

org.apache.pdf
box.filter.RunL
engthDecodeF

ilter
Only decode

supported
No params
available

CCITTFaxDecod
e

org.apache.pdf
box.filter.CCIT
TFaxDecodeFi

lter
Only decode

supported

K,
EncodedByteAlign,

Columns, Rows,
BlackIs1

(partially support.
Unsupported

params -
EndOfLine,

EndOfBlock,
DamagedRowsBef

oreError)

DCTDecode

org.apache.pdf
box.filter.DCT

Filter

Isn't
implemented

yet (see
7.4.8)

JBIG2Decode

org.apache.pdf
box.filter.JBIG

2Filter
Only decode

supported
JBIG2Globals

(complete support)

JPXDecode

org.apache.pdf
box.filter.JPXF

ilter
Only decode

supported
No params
available

Not
applicable

http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCII85Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCII85Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCII85Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCIIHexFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCIIHexFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/ASCIIHexFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/LZWFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/LZWFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/LZWFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/FlateFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/FlateFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/FlateFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/RunLengthDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/RunLengthDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/RunLengthDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/RunLengthDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CCITTFaxDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CCITTFaxDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CCITTFaxDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CCITTFaxDecodeFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/DCTFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/DCTFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/DCTFilter.html
http://pdfbox.apache.org/docs/1.8.2/pdfcoverage.html
http://pdfbox.apache.org/docs/1.8.2/pdfcoverage.html
http://pdfbox.apache.org/docs/1.8.2/pdfcoverage.html
http://pdfbox.apache.org/docs/1.8.2/pdfcoverage.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JBIG2Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JBIG2Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JBIG2Filter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JPXFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JPXFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/JPXFilter.html

174

Name PDFBox class
PDFBox
support

Supported
decode params PDF/A-1 PDF/A-2 PDF/A-3

Crypt

org.apache.pdf
box.filter.Crypt

Filter

Decode and
encode (Only
identity crypt

filter)

Name (partially
support.

Unsupported
params - Type)

Not
applicable

Permitte
d8 Permitted9

Note that support levels of all the filters above were also verified by checking the source code

8 when the when the value of the "Name" key in the decode parameters dictionary is "Identity"
9 when the value of the "Name" key in the decode parameters dictionary is "Identity".

http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CryptFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CryptFilter.html
http://pdfbox.apache.org/docs/1.8.6/javadocs/org/apache/pdfbox/filter/CryptFilter.html

175

Annex E: License Compatibility
E.1 Introduction

E.2 PREFORMA requirements

E.3 Rationale for reusing existing software

E.4 Scenarios for reusing existing software

E.4.1 Implementation Checker

E.4.2 Metadata Fixer

E.4.3 Policy Checker

E.4.4 Reporter

E.4.5 Shell

E.4.6 High level dependencies

E.4.6.1 Development toolset

E.4.6.2 Supporting Services

E.5 Legal analysis

E.5.1 Scenarios requiring license compatibility

E.5.2 Open source license compatibility

E.6 veraPDF licence compatibility

E.6.1 Implementation Checker dependencies

E.6.2 Metadata Fixer dependencies

E.6.3 Policy Checker dependencies

E.6.4 Reporter dependencies

E.6.5 Shell dependencies

E.6.6 High-level dependencies

E.1 Introduction
This document describes the dependencies and licensing implications of the veraPDF functional and
technical designs. It demonstrates compatibility with the required open source licenses.

Section 2 describes the licensing requirements relating to software and test corpora. Section 3 describes
the rationale for using existing software to deliver certain aspects of the Conformance Checker
functionality. Section 4 describes the scenarios for each Conformance Checker component under which we
propose to reuse or improve existing software. Section 5 refers to authoritative sources to demonstrate
compatibility between commonly used open source licenses and the required licenses. Section 6 identifies
dependencies in the veraPDF designs and demonstrates the necessary license compatibility to permit the
proposed use.

176

E.2 PREFORMA requirements

Software

In the Framework Agreement10 PREFORMA requires all software developed during the project to be
licensed under two specific open source licenses (the ‘PREFORMA licenses’):

● GNU General Public License v3 or later (GPLv3+);
● Mozilla Public License v2 or later (MPLv2+).

In the clarification11 issued on 26 February 2015, PREFORMA confirmed the interpretation of licensing
compatibility:

(PREFORMA Requirement 1)

1. All code (software and libraries) distributed as part of the Conformance Checker, either developed
during the project or already developed by the supplier and contributed to PREFORMA, is to be
released under GPLv3++ and MPLv2++.

(PREFORMA Requirement 2)

2. All code (software and libraries) distributed as part of the Conformance Checker, either developed
during the project or already developed by a third party and contributed by the supplier to
PREFORMA, has to be freely available in open source form under generally recognized free software
licenses compatible with the GPLv3++ and MPLv2++ to enable redistribution of the whole package
under these two licenses.
All code (software and libraries) required to compile and/or execute the Conformance Checker in a
production environment has to be freely available in open source form under generally recognized
free software licenses compatible with the GPLv3++ and MPLv2++ to enable redistribution of the
whole package under these two licenses.

E.3 Rationale for reusing existing software
The stated aims of the open source approach include an intention for us (the contractors) “to be active
contributors in other relevant Open Source projects that are related to the Open Source project for which
[we] are contracted”12. We interpret this as a desire on the part of the PREFORMA consortium to contribute
to a healthy open source ecosystem of active software projects, by reusing and even improving existing
open source software for the purposes of building the Conformance Checker within the expectations
described above.

Reuse and improvement of existing software is both a common practice in open source development and
the most efficient way to deliver the Conformance Checker functionality without reinventing wheels when
existing software can be built upon. Reusing rather than reinventing has two distinct benefits:

1. greater reliability: which comes from exposure to testing over a long period of time and an existing
community of maintainers;

2. greater efficiency: by focusing scarce development resources on functionality which is core to the
Conformance Checker and not currently available in existing software.

10 PREFORMA Framework Agreement v1.0 (section 17.3, p. 15)
11 PREFORMA_clarification_from_PREFORMA_on_licensing_requirements.pdf (received via email)
12 PREFORMA Invitation to Tender v1.0 (p. 15)

177

Community contributions

In building the open source community that will sustain veraPDF after the funded period, it will be
necessary to accept third-party contributions to the project. The legal arrangements (for example
contributor agreements) for accepting contributions such that they align with the licensing requirements and
do not affect the licensing of the Conformance Checker are defined in CE 3.3 Code.

E.4 Scenarios for reusing existing software
The original veraPDF Tender Proposal, section V Technical Approach (p. 22) presented two options for
development:

● building on existing open-source tools;
● developing a ‘greenfield’ solution (an entirely new codebase, from scratch).

PREFORMA further explain that:

The use of third party code under other open source licenses should be an instrument enabling
suppliers to devote the maximum of their resources to the developement of new code that is required
by the Conformance Checker but does not yet exist. There is a risk however that an overly
dependancy on third party code for realising the Conformance Checker could cause the project to end
up as a mashup of existing software with little innovation value.

In consideration of the following...

It follows that the possibilities for use of third party code for the core functionality, i.e. the
implementation checker and the policy checker, is rather limited. In particular for the implementation
checker, where the use of third party code has to be considered only under extraordinary
circumstances and would require the explicit consent of the PREFORMA Consortium. The use of third
party code for the subsidiary functions, i.e. shell, reporter, and metadata fixer, which are not the
central objective of PREFORMA, could however be considered with a less restrictive view.

...we will pursue a nuanced approach, ensuring that the Implementation Checker and the Metadata Fixer
rely for their core functionality on entirely greenfields solutions which will be licensed under
GPLv3+/MPLv2+ (Requirement 1). For the Policy Checker, Reporter, and Shell we propose the use of
third-party software such that generic functionality is provided by established and robust tools compatible
with GPLv3+/MPLv2+ (Requirement 2).

This will meet the stated aim of devoting funding to innovation and developing new format validation
functionality that is not currently available in existing software.

E.4.1 Implementation Checker
The Implementation Checker, along with other components of the Conformance Checker, rely on a PDF
Parser, as described in FS 3.1.1.1 PDF Parsers. We have considered the use of PDFBox in detail, as
described in Annex D: PDFBox Feasibility Study.

In summary, PDFBox provides a PDF Parser as well as (limited) PDF/A Validation functionality. In light of
the requirement to ensure that the Implementation Checker will be entirely licensed under GPLv3+/MPLv2+
we will:

● develop a greenfield Implementation Checker not using PDFBox PDF/A Validation;
● develop a greenfield PDF Parser not using the PDFBox PDF Parser.

178

Indicative costings for this approach were provided in the the original veraPDF Tender Proposal. This is in
line with the Evaluation Report13 which informed us that:

Only the greenfield solution using "GPLv3 or later and MPLv2 or later" would meet the minimum
requirements in PREFORMA

In order to progress development during the first half of Phase 2 we are proposing the use of the PDFBox
PDF Parser as a reference implementation so that development of the Implementation Checker can begin
immediately and be subject to testing for the maximum amount of time available. During the Phase 2
redesign, our greenfield PDF Parser will be swapped with the PDFBox PDF Parser so that the final
Conformance Checker prototype delivered at the end of Phase 2 will include an Implementation Checker
which is entirely GPLv3+/MPLv2+ for its core functionality. See Annex B. Technical Milestones and
Deliverables for more detail.

E.4.2 Metadata Fixer
The Metadata Fixer relies on a PDF Writer to output a Repaired PDF Document containing changes to its
PDF Metadata. veraPDF will develop a greenfields PDF Writer so that the Metadata Fixer will be entirely
licensed under GPLv3+/MPLv2+.

As with the Implementation Checker, in order to progress development during the first half of
Phase 2 we are proposing the use of the PDFBox as a reference implementation so that development of
the Metadata Fixer can begin immediately and be subject to testing for the maximum amount of time
available. During the Phase 2 redesign, our greenfield PDF Writer will be swapped with the PDFBox
component so that the final Conformance Checker prototype delivered at the end of Phase 2 will include a
Metadata Fixer which is entirely GPLv3+/MPLv2+ for its core functionality.

E.4.3 Policy Checker
As designed, the Policy Checker relies on the PDF Features Report generated by the Implementation
Checker using the PDF Parser. In order to enforce rules on the PDF Features Report we have proposed
the use of Schematron for Policy Profiles as described in TS 5 Policy Profile.

Schematron is an open standard with several open source libraries available. It is also possible to handle
Schematron documents (Policy Profiles) using generic XML/XSLT libraries such as those available within
the Java JDK, however Schematron libraries provide a more straightforward and reliable way to handle the
enforcement of Policy Checks.

All proposed dependencies are components operating on open standards and available under open source
licenses compatible with GPLv3+/MPLv2+.

E.4.4 Reporter
The Reporter transforms Machine-readable and Human-readable Reports (see FS 2.4 veraPDF Reporter)
using generic components for handling open formats such as XML/HTML/PDF. We propose the use of
Xalan for XML/XSLT however libraries such as those available within the Java JDK could be used instead.
We propose the use of Apache FOP for formatting Human-readable Reports in PDF.

Internationalisation (see TS 7 Internationalization) will use Translation Memory eXchange (TMX) for the
Language Packs providing translation between languages. TMX is an open standard and we propose the
use of an open source validator and editor.

13 PREFORMA Evaluation Report (20141003_05_VeraConsortium_consolidated_v1.0.pdf, received via email
06/10/14, p. 2)

179

All proposed dependencies are generic components operating on open standards and available under
open source licenses compatible with GPLv3+/MPLv2+. Users are also able to provide Report Templates
transforming Machine-readable or Human-readable Reports into any format of their choosing (see TS 8
Report Template format).

E.4.5 Shell
The Shell manages interactions with users through the interfaces described in FS 4 Interfaces.

Our proposals are:

● FS 4.1.1 Command Line Interface (CLI): to use Apache CLI for parsing command line parameters;
● FS 4.1.2 Desktop Graphical User Interface (GUI-D): to use the same framework as the Web GUI;
● FS 4.2.2 Web Graphical User Interface (GUI-W): to use JQuery and perhaps Bootstrap.

In addition, the Web GUI depends on the REST API:

● TS 1.6.3.5 REST API: to use the JavaX.RS REST Services which are available within the Java JDK
and perhaps other frameworks such as DropWizard;

All proposed dependencies are generic web components available under licenses compatible with
GPLv3+/MPLv2+.

E.4.6 High level dependencies

These are divided into two categories:

● the development toolset includes software products used in the course of development (generally to
edit, build, and test code but the definition could also include editors used to create documentation);

● supporting services include online services used during the project to support development or
facilitate cooperation (for example to host source code repositories, provide continuous integration,
or track issues).

E.4.6.1 Development toolset

The choice of development tools relies on underlying technology, for example the chosen development
language. PREFORMA requires that veraPDF “must be built for portability between technical deployment
platforms. (platform independent)”14 leading to a choice between development in Java or C++. Other tools
are used by us during the project but are not required to “develop, maintain, test, and operate” the software
- users can choose their own alternatives without affecting the software functionality.

E.4.6.1.1 Development language

Both alternatives (Java and C++) place dependencies on existing software, in order to compile and execute
the veraPDF software. The Evaluation Report states that the “use of Java causes a dependency on the
Java Virtual Machine” - this is discussed fully below - while the alternative choice of C++ would place
requirements on compilers for different platforms.

14 PREFORMA Invitation to Tender v1.0 (section 5.1, p. 12)

180

For Java, the dependencies include:

● A Java Development Kit (JDK) required to compile Java code to bytecode (this also provides the
native Java software libraries which provide low-level functionality such as file I/O);

● A Java virtual machine (JVM) required to execute the Java bytecode in the user’s environment
(desktop or server).

The JDK is used to develop and compile the code and is only needed if you want to change the software
(presuming a compiled version is freely available, which is required for various platforms). There are fewer
JDKs available with only two in wide use:

● the official Oracle JDK (Oracle own the Java trademark) which is GPL licensed (this also includes
the official HotSpot JVM which is GPLv2 licensed);

● the OpenJDK, which is the official JavaSE 7 reference implementation and is available under the
GPL (this also includes IcedTea JVM, the most popular HotSpot alternative).

The JVM is required by anyone who wants to operate the software and there are a large number of JVMs
available in free and open source implementations.15

In principle these are all that are required to compile and run all Java software and the software won’t be
tied to a particular JDK or JVM implementation and will be tested on both of the widely used JVMs. Note
that it is not possible to control which JVM a user chooses to use when executing the software however
both the main alternatives comply with the requirement to be compatible with GPLv3+/MPLv2+
(Requirement 2).

E.4.6.1.2 Other tools

In practice, developers don’t edit code with plain text editors or call the Java compiler directly on the
command line to build it. It’s time consuming and becomes impractical for projects with more than a handful
of source files. Most software developers use a trusted set of tools to organise, edit and build software
projects and the choice reflects personal preferences. This is true for the tools we’ve chosen but there is no
absolute requirement to use any of them in order to alter, build or execute the source code.

We intend to use Git for source code management, technically known as revision control. This was chosen
as it’s used by 50% of the worlds open source projects, including the Linux kernel and is licensed under the
GPL. Git isn’t required to access the latest version of the code or to build it. Only people wanting to access
the source history (who changed what and when) would need to install Git, or visit the project’s GitHub site
where it’s available online. All committers to the projects source will have to use Git. Committers are
individuals authorised to make direct changes to the official veraPDF git repository. This doesn’t include
contributions which are submitted as a patch which is then tested and applied by a committer.

In order to build the Java project and manage software dependencies we’ll use Maven, the Apache
software lifecycle tool. This will also be used to generate JavaDoc documentation, a source code
information website and package software releases. Maven is available under the Apache 2 license. The
veraPDF source code will include the Maven POM.xml projects files which provide the tool with structured
information about the tools used to build the project and its dependencies. This is simply for convenience
so that all developers who use Maven can build the source with a single command. Also most Java
development environments support the POM format and can automatically import Maven projects. It’s
possible to build and run Maven projects without ever using Maven although a little initial effort would be
required to set up an alternative build system.

15 http://en.wikipedia.org/wiki/List_of_Java_virtual_machines

181

Finally we’ll be using Jenkins as the official project continuous integration server available under the MIT
license. This is a supporting tool and there’s no need to install or use Jenkins at all, although anyone is free
to visit the web GUI of the server16.

We’ve deliberately not covered Integrated Development Environments (IDEs) because we won’t be
mandating one. Developers are free to use any tool that supports Java development, indeed it’s likely that
individual developers within the consortium will use different tools. To be clear an IDE license doesn’t
usually have any implications for the code developed using it.

In summary we are confident that we’ll be using only open source licensed tools to develop the software.
Furthermore we’re decoupled from any specific implementation and credible open source alternatives are
also available.

E.4.6.2 Supporting Services

Running veraPDF as a genuine open source project introduces specific requirements. In order to establish
an open source community we’ll need to be visible and accessible online as early as possible. To this end
we’ll be using established third parties that provide more robust and reliable services that we could build.
Use of these services represent a further level of decoupling from the delivered software and licensing
shouldn’t be an issue. In most cases they’re based on open source software but may use proprietary code
in places.

We’ll be using GitHub to host our source code repository online, allowing other developers to easily access
and clone it. It also provides other services such as issue tracking, online editing and a web GUI that ties it
all together. The service is based on Git (GPL) but with proprietary code to distinguish them from the
competition, e.g. the online source code editor. GitHub are committed to providing free hosting to all open
source projects on an ongoing basis and it has become the de-facto home to the majority of such software
with over 10 million source repositories. Licensing not an issue as only Git, the supporting tool, and its GPL
license have any project ramifications.

It’s likely that we will use Travis, an online Continuous Integrations service, that is integrated with GitHub.
Travis provides vanilla Ubuntu VMs for building software, and supports testing against both widely used
JDKs and JVMs. Again it is possible that some non-open source software is used by Travis but this does
not have licensing implications for the veraPDF software. Again they are committed to providing a free to
use service for open source projects.

In conclusion, all proposed services are free to use but not necessarily completely open source licensed.
These are only supporting services which are very loosely coupled to the software itself and any of them
could be replaced easily.

16 http://jenkins.opf-labs.org/

182

E.5 Legal analysis

E.5.1 Scenarios requiring license compatibility

The proposed uses of existing software create two scenarios requiring licensing compatibility.

Scenario Description Licensing requirement

Reuse ‘Linking’ with the existing software to
provide specific functionality to veraPDF.

Linking can also require ‘redistributing’ with
the final, packaged product however use for
‘testing’ during development or building the
software does not require redistribution.

That the licenses are
“compatible with”
GPLv3+/MPLv2+ as described
in Requirement 2.

See Table 2.

Improvement Submitting source code changes back to
the existing software (for example patching
bugs or enhancing functionality).

That the contributed code
complies with the license of
the existing software.

As veraPDF retain the
copyright in code developed
during PREFORMA we will
license the contributions as
required by the existing
software.

Table 1: Scenarios requiring licensing compatibility

E.5.2 Open source license compatibility

To demonstrate license compatibility we refer to authoritative sources to show that common open source
licenses are “compatible with” GPLv3+/MPLv2+.

ID Original license Analysis Source

1 Apache 2.0 “Apache 2 software can ... be
included in GPLv3 projects”

“[Apache 2.0] is ... compatible with
version 3 of the GNU GPL”

Apache Software
Foundation17

Free Software Foundation18

“May I combine MPL-licensed code
and [Apache]-licensed code in the
same executable program? … Yes”

Mozilla Foundation19

17 http://www.apache.org/licenses/GPL-compatibility.html
18 https://www.gnu.org/licenses/license-list.html#apache2
19 https://www.mozilla.org/MPL/2.0/FAQ.html

183

ID Original license Analysis Source

2 LGPL 2.1 or 3 “Compatible with … GPL v3” Free Software Foundation20

“May I combine MPL-licensed code
and (L)GPL-licensed code in the
same executable program? … Yes”

Mozilla Foundation21

3 BSD “Redistribution and use in source
and binary forms, with or without
modification, are permitted”

Open Source Initiative22, 23

4 MIT “Permission is ... granted, free of
charge ... to deal in the Software
without restriction, including without
limitation the rights to use, copy,
modify, merge, publish, distribute,
sublicense”

Open Source Initiative24

5 Common
Development and
Distribution (CDDL
v1.1)

“You may distribute the Executable
form of the Covered Software under
the terms of this License or under
the terms of a license of Your
choice”

Open Source Initiative25

6 Eclipse Public
License 1.0

“each Contributor hereby grants
Recipient a non-exclusive,
worldwide, royalty-free copyright
license to reproduce, prepare
derivative works of, publicly display,
publicly perform, distribute and
sublicense the Contribution of such
Contributor, if any, and such
derivative works, in source code and
object code form”

Eclipse Foundation26

20 https://www.gnu.org/licenses/license-list.html#LGPL
21 https://www.mozilla.org/MPL/2.0/FAQ.html
22 http://opensource.org/licenses/BSD-2-Clause
23 http://opensource.org/licenses/BSD-3-Clause
24 http://opensource.org/licenses/MIT
25 http://opensource.org/licenses/CDDL-1.0
26 https://www.eclipse.org/legal/epl-v10.html

184

ID Original license Analysis Source

7 GPLv2 “GPLv2 is, by itself, not compatible
with GPLv3. However, most
software released under GPLv2
allows you to use the terms of later
versions of the GPL as well. When
this is the case, you can use the
code under GPLv3 to make the
desired combination.”

Free Software Foundation27

“Section 3.3 provides indirect
compatibility between [MPL v2.0]
and the GNU GPL version 2.0”

Free Software Foundation28

8 Affero GPL v3 “[AGPL v3] is ... technically not
compatible with GPLv3 in a strict
sense … However, you are allowed
to combine separate modules or
source files released under both of
those licenses in a single project

Free Software Foundation29

“Section 3.3 provides indirect
compatibility between [MPL v2.0]
and … the GNU AGPL version 3.0”

Free Software Foundation30

Table 2: Open source licence compatibility with GPLv3+/MPLv2+

E.6 veraPDF licence compatibility
Given that open source software often reuses multiple other projects, dependency analysis can very quickly
uncover a wide variety of licenses in the dependency of any one project. In most cases, these licenses will
be compatible, enabling the software to be distributed under one license.

The tables in this section list the proposed dependencies of each veraPDF Conformance Checker
component and describe the licence and compatibility with GPLv3+/MPLv2+ based on the legal analysis.

veraPDF dependencies are derived using:

● software identified in the Technical Specification;
● a Maven plugin-generated license and dependency analysis31 of the veraPDF proof-of-concept (see

Annex F: Software and Demonstrator).

27 http://www.gnu.org/licenses/license-list.html#GPLv2
28 http://www.gnu.org/licenses/license-list.html#MPL-2.0
29 http://www.gnu.org/licenses/license-list.html#AGPLv3.0
30 http://www.gnu.org/licenses/license-list.html#MPL-2.0
31 http://projects.opf-labs.org/verapdf/pdf-rest/pdfbox-rest-application/dependencies.html

185

During the first half of Phase 2 we will use the PDFBox PDF Parser however this will be swapped-out with
our greenfields PDF Parser when it is available during the redesign stage.

The Apache Software Foundation identifies PDFBox dependencies using:

● a manually maintained list32;
● a Sonar analysis of the PDFBox code base33.

We also supply estimated effort, and by implication cost, for redeveloping these components if necessary.
This is based on the COCOMO model34 for estimating development effort. A conservative method for using
these figures to calculate the impact on veraPDF development time would be to use a rule of thumb and
divide by 5 to estimate the proportion of each project we would have to redevelop.

An example of COCOMO model estimation for JUnit: https://www.openhub.net/p/junit

* figures for some projects were not available on http://openhub.net/

32 https://pdfbox.apache.org/dependencies.html
33 https://analysis.apache.org/plugins/resource/58986?page=org.sonar.plugins.design.ui.libraries.LibrariesPage
34 http://en.wikipedia.org/wiki/COCOMO

https://www.openhub.net/p/junit

186

E.6.1 Implementation Checker dependencies
NOTE: these only apply during the first half of Phase 2. Once we have developed the veraPDF greenfield
PDF Parser the Implementation Checker will have no dependencies.

Function Dependency Licence Proposed
use

Legal
justificatio
n

Estimated
effort/cost

PDF parsing PDFBox

Apache 2.035 Patching
Linking

1
1

30 years

(required by
PDFBox)

Preflight
XMPBox

Apache 2.036 Patching
Linking

1
1

[unknown]*

(required by
PDFBox)

FontBox
Jempbox

BSD37, 38 Patching
Linking

3
3

2 years

(required by
PDFBox)

Commons
Logging

Apache 2.039 Linking 1 3 years

Encryption (required by
PDFBox)
Bouncy Castle

MIT40 Linking

4 128 years

E.6.2 Metadata Fixer dependencies
Metadata Fixer dependencies are identical to the Implementation Checker - the final prototype will have no
dependencies but we propose the first prototype be based on PDFBox to expedite development and
ensure that maximum amount of time is available for testing.

35 https://pdfbox.apache.org/index.html
36 https://pdfbox.apache.org/index.html
37 http://sourceforge.net/projects/fontbox/
38 http://sourceforge.net/projects/jempbox/
39 http://commons.apache.org
40 http://www.bouncycastle.org/licence.html

187

E.6.3 Policy Checker dependencies

Function Dependency Licence Proposed
use

Legal
justification

Estimated effort/cost

Policy Profiles Schematron OSI compliant
zlib/libpng
license and
Apache
License41

Linking 1 147 years

Policy
Checking

ph-schematron Apache 2.042 Linking 1 55 years

Probatron4j Affero GPL
v343

Linking 8 2 years

E.6.4 Reporter dependencies

Function Dependency Licence Proposed
use

Legal
justificatio
n

Estimated
effort/cost

PDF
Reporting

FOP Apache 2.044 Linking 1 90 years

XML
Reporting

Xalan Apache 2.045 Linking 1 53 years

Internationalis
ation

TMX format CC-BY 3.046 [n/a] [n/a] [n/a]

TMX Validator Eclipse Public
Licence47

Linking 6 [unknown]*

Heartsome TMX
Editor

GPL v248 Standalone 7 [unknown]*

41 http://www.schematron.com
42 https://github.com/phax/ph-schematron
43 http://www.probatron.org/probatron4j.html
44 http://xmlgraphics.apache.org/fop/license.html
45 http://xalan.apache.org
46 http://www.gala-global.org/oscarStandards/tmx/tmx14b.html
47 http://sourceforge.net/projects/tmxvalidator/
48 https://github.com/heartsome/tmxeditor8/blob/master/LICENSE

188

E.6.5 Shell dependencies

Function Dependency Licence Proposed
use

Legal
justification

Estimated
effort/cost

REST service
framework

JavaX.RS [within Java] Linking [n/a] [n/a]

Parsing
command line
parameters

Commons
- CLI

Apache 2.049 Linking 1 2 years

Web Interface
layout

JQuery MIT50 Linking 4 16 years

Bootstrap MIT51 Linking 4 17 years

REST
application
framework and
server

DropWizard
Core

Apache 2.052 Linking 2 13 years

Monitoring or
managing
REST web
services

(required by
DropWizard
core)

dropwizard-*
metrics-*

Apache 2.053 Linking 1 5 years

Java object to
JSON
serialisation for
web services

(required by
DropWizard
core)

jackson-*

Apache 2.0
and LGPL
2.154

Linking 1, 2 23 years

Java web
server and
servlet
container.

(required by
DropWizard
core)

jetty-*

Apache 2.0
and Eclipse
Public License
1.055

Linking 1 201 years

Developer
support
libraries

(required by
DropWizard
core)

findbugs
java

LGPL v356 Linking 2 73 years

49 http://commons.apache.org/proper/commons-cli/
50 https://jquery.org/license/
51 http://getbootstrap.com/getting-started/#license-faqs
52 http://dropwizard.io/about/faq.html
53 https://github.com/dropwizard/metrics/blob/master/LICENSE
54 http://wiki.fasterxml.com/JacksonLicensing
55 http://eclipse.org/jetty/licenses.php
56 http://findbugs.sourceforge.net

189

Function Dependency Licence Proposed
use

Legal
justification

Estimated
effort/cost

Java object to
XML
serialisation for
web services

Jackson XML
Dataformatter

Apache 2.0
and LGPL
2.157

Linking 1, 2 2 years

E.6.6 High-level dependencies

Function Dependency Licence Proposed
use

Legal
justificatio
n

Estimated
effort/cost

Runtime Linux [various] Runtime [n/a] [out of scope]

Java Virtual
Machine
(HotSpot)

GPLv2 Runtime [n/a] [out of scope]

Java Virtual
Machine
(IcedTea)

GPL with
linking
exception

Runtime [n/a] [out of scope]

Developing or
executing unit
tests

JUnit Eclipse Public
License 1.058

Testing 6 7 years

Testing
hashCode and
equals
methods for
Java objects

EqualsVerifier Apache 2.059 Testing 1 3 years

Collections,
caching,
primitives
support,
concurrency
libraries,
common
annotations,
string
processing,
I/O, etc.

Guava Libraries Apache 2.060 Linking 1 71 years

57 http://wiki.fasterxml.com/JacksonLicensing
58 http://junit.org/license.html
59 http://www.jqno.nl/equalsverifier/
60 https://code.google.com/p/guava-libraries/

190

Function Dependency Licence Proposed
use

Legal
justificatio
n

Estimated
effort/cost

Standard
encoding and
decoding
routines (e.g.
Base64
encoding)

Commons
- Codec

Apache 2.061 Linking 1 5 years

61 http://commons.apache.org

191

Annex F: Software and Demonstrator
veraPDF GitHub account: https://github.com/verapdf/

Name Web-based demonstrator (pdfbox-rest) PDFBox fork (for testing)

Description Online demonstrator of PDF/A parsing
and validation functionality (based on
PDFBox)

For evaluating PDFBox against functional
and technical specifications

URL http://preflight.verapdf.org/ Not available

Source code https://github.com/verapdf/pdfbox-rest https://github.com/verapdf/pdfbox

Jenkins http://jenkins.opf-labs.org/job/pdfbox-rest/ http://jenkins.opf-labs.org/job/PDFBox/

Sonar http://sonar.opf-
labs.org/dashboard/index?id=org.verapdf
.pdfbox%3Apdfbox-rest

http://sonar.opf-
labs.org/dashboard/index?did=1&id=org.a
pache.pdfbox%3Apdfbox-reactor

Travis https://travis-ci.org/verapdf/pdfbox-rest https://travis-ci.org/verapdf/pdfbox

https://github.com/verapdf/
http://preflight.verapdf.org/
https://github.com/verapdf/pdfbox-rest
https://github.com/verapdf/pdfbox
http://jenkins.opf-labs.org/job/pdfbox-rest/
http://jenkins.opf-labs.org/job/PDFBox/
http://sonar.opf-labs.org/dashboard/index?id=org.verapdf.pdfbox%3Apdfbox-rest
http://sonar.opf-labs.org/dashboard/index?id=org.verapdf.pdfbox%3Apdfbox-rest
http://sonar.opf-labs.org/dashboard/index?id=org.verapdf.pdfbox%3Apdfbox-rest
http://sonar.opf-labs.org/dashboard/index?did=1&id=org.apache.pdfbox%3Apdfbox-reactor
http://sonar.opf-labs.org/dashboard/index?did=1&id=org.apache.pdfbox%3Apdfbox-reactor
http://sonar.opf-labs.org/dashboard/index?did=1&id=org.apache.pdfbox%3Apdfbox-reactor
https://travis-ci.org/verapdf/pdfbox-rest
https://travis-ci.org/verapdf/pdfbox

192

Annex G. ICC Profile Checks for PDF/A Validation
G.1 Normative references

G.2 Terminology

G.3 ICC profile requirements

G.3.1 Version information

G.3.2 Device class

G.3.3 Colour space

G.3.4 Requirements for specific profile types

G.3.4.1 Profile types

G.3.4.2 Input profiles

G.3.4.3 Display profiles

G.3.4.4 Output profiles

G.3.4.5 Profile connection space

G.3.4.6 Required tags per each profile type

G.3.5 Tag definitions

G.1 Normative references
[1] PDF/A specifications: ISO 19005-1:2005, ISO 19005-2:2011, ISO 19005-3:2012.
[2] PDF Specifications: PDF 1.4 Specification (Adobe), ISO 32000-1:2008.
[3] ICC specifications: ICC.1:2004-10 (Profile version 4.2.0.0)

G.2 Terminology
Term Definition

Profile header The first 128 bytes of the ICC profile as defined by 7.2
of ICC.1:2004-10.

Profile version The version of the ICC profile as specified in bytes 8-11
of the profile header, see 7.2.4 of ICC.1:2004-10.

Device class The profile device class as specified in bytes 12-15 of
the profile header, see 7.2.5 of ICC.1:2004-10.

Profile colour space The data colour space as specified in bytes 16-19 of
the profile header, see 7.2.6 of ICC.1:2004-10.

Profile connection space (PCS) Profile connection space as specified in bytes 20-23 of
the profile header, see 7.2.7 of ICC.1:2004-10.

Profile tag A named byte range of the ICC profile defined in the
profile Tag Table, see 7.3 of ICC.1:2004-10.

Input profile An ICC profile with device class “scnr”.

193

Term Definition

Display profile An ICC profile with device class “mntr”.

Output profile An ICC profile with device class “prtr”.

ColorSpace conversion profile An ICC profile with device class “spac”.

G.3 ICC profile requirements

G.3.1 Version information

ICC profile version shall agree with the PDF file version as specified in Table 67 of ISO 32000-1:2008.

G.3.2 Device class

Device class of the ICC profile referred by DestOutputProfile in the PDF/A OutputIntent shall be “prtr” or
“mntr”.

Device class of the ICC profile used in the ICCBased colour space array shall be “scnr”, “mntr”, “prtr” or
“spac”.

G.3.3 Colour space

Colour space of the ICC profile referred by DestOutputProfile in the PDF/A OutputIntent shall have a
colour space of either “GRAY”, “RGB”, or “CMYK”.

Colour space of the ICC profile referred by DestOutputProfile in the PDF/A OutputIntent shall have a
colour space of either “GRAY”, “RGB ”, “CMYK”, or “Lab ”.

G.3.4 Requirements for specific profile types

G.3.4.1 Profile types

Each profile has one of three types:

● N-component LUT-based
● Three-component matrix-based
● Monochrome

characterized by a different model for conversion between the device colour space and the profile
connection space.

There is no explicit type information in the profile header. However, the type can be derived based on the
collection of tags present in the profile:

● Presence of the tag “grayTRCTag” implies Monochrome type.
● Presence of one of the following tags “redTRCTag”, “greenTRCTag”, “blueTRCTag” implies Three-

component matrix-based profiles.
● If none of these tags is present this implies N-component LUT-based type.

G.3.4.2 Input profiles

Input profile shall have the type of either “N-component LUT-based”, “Three-component matrix-based”, or
“Monochrome”.

194

G.3.4.3 Display profiles

Display profile shall have the type of either “N-component LUT-based”, “Three-component matrix-based”,
or “Monochrome”.

G.3.4.4 Output profiles

Output profile shall have the type of either “N-component LUT-based” or “Monochrome”.

G.3.4.5 Profile connection space

Any Three-component matrix-based profile shall use “XYZ ” as a profile connection space.

G.3.4.6 Required tags per each profile type

The following tags are required for all profile types:

● profileDescriptionTag
● mediaWhitePointTag
● copyrightTag
● chromaticAdaptationTag

The additional required tags per profile type are:

Profile type Required tags Additional permitted tags

N-component LUT-based input
profile

AToB0Tag AToB1Tag

AToB2Tag

BToA0Tag

BToA1Tag

BToA2Tag

gamutTag

N-component LUT-based display
profile

ColorSpace conversion profile

AToB0Tag

BToA0Tag

AToB1Tag

AToB2Tag

BToA1Tag

BToA2Tag

gamutTag

195

Profile type Required tags Additional permitted tags

N-component LUT based output
profile

AToB0Tag

BToA0Tag

gamutTag

AToB1Tag

BToA1Tag

AToB2Tag

BToA2Tag

Monochrome input profile

Monochrome display profile

Monochrome output profile

grayTRCTag

AToB0Tag

AToB1Tag

AToB2Tag

BToA0Tag

BToA1Tag

BToA2Tag

Three-component matrix-based
input profile

Three-component matrix-based
display profile

redMatrixColumnTag

greenMatrixColumnTag

blueMatrixColumnTag

redTRCTag

greenTRCTag

blueTRCTag

AToB0Tag

AToB1Tag

AToB2Tag

BToA0Tag

BToA1Tag

BToA2Tag

gamutTag

G.3.5 Tag definitions

All tags used in the ICC profile shall have one of the permitted tag types as specified in Section 9 of
ICC.1:2004-10 and the corresponding type definitions as specified in Section 10 of ICC.1:2004-10.

The number of input and output channels for tags defining colour transform shall agree with the values of
both the profile colour space and the profile connection space.

196

Annex H. Embedded Font Checks for PDF/A Validation
H.1 Normative references

H.2 Terminology

H.3 Formats of embedded font files

H.4 Embedded font file requirements

H.4.1 PostScript Type1 Fonts

H.4.2 Compact Font File (CFF) in case of Type1 and MMType1 PDF Font Types

H.4.3 Compact Font File (CFF) in case of CIDFontType0 PDF Font Type

H.4.4 TrueType Font File in case of TrueType PDF Font Type

H.4.5 TrueType Font File in case of CIDFontType2 Font Type

H.4.6 OpenType fonts

H.1 Normative references
PDF/A specifications: ISO 19005-1:2005, ISO 19005-2:2011, ISO 19005-3:2012.

PDF Specifications: PDF 1.4 Specification (Adobe), ISO 32000-1:2008.

Font specifications:

[1] Apple Computer, Inc., TrueType Reference Manual. Available on Apple’s Web site at
http://developer.apple.com/fonts/TTRefMan/

[2] Microsoft Corporation, TrueType 1.0 Font Files Technical Specification. Available at
http://www.microsoft.com/typography/tt/tt.htm

[3] Microsoft Corporation, OpenType specification, version 1.6. Available at
http://www.microsoft.com/typography/otspec/

[4] Open Font Format, ISO/IEC 14496-22:2009 (Second Edition).

[5] Adobe Type 1 Font Format, Adobe Systems Incorporated, ISBN 0-201-57044-0, 1990.

[6] Technical Note #5015, Type 1 Font Format Supplement, 15 January 1994, Adobe Systems
Incorporated.

[7] Technical Note #5088, Font Naming Issues, 12 April 1993, Adobe Systems Incorporated.

[8] Technical Note #5092, CID-Keyed Font Technology Overview, Adobe Developer Support, 12
September 1994, Adobe Systems Incorporated.

[9] Technical Note #5176, The Compact Font Format Specification, Version 1.0, 18 March 1998,
Adobe Systems Incorporated.

[10] Technical Note #5177, The Type 2 Charstring Format, 5 May 1998, Adobe Systems Incorporated.

[11] Technical Note #5641, Enabling PDF Font Embedding for CID-Keyed Fonts, 7 July 1998, Adobe
Systems Incorporated.

[12] PostScript Language Reference, Third Edition, Adobe Systems Incorporated, ISBN 0-201-37922-
8, 1999.

http://developer.apple.com/fonts/TTRefMan/
http://developer.apple.com/fonts/TTRefMan/
http://developer.apple.com/fonts/TTRefMan/
http://www.microsoft.com/typography/tt/tt.htm
http://www.microsoft.com/typography/tt/tt.htm
http://www.microsoft.com/typography/tt/tt.htm

197

H.2 Terminology
Term Definition

CFF Charset A structure in the CFF Font providing the mapping from the glyph
names to GIDs. See [9], Section 13.

CFF Font Type1 or CIDFontType0 font file in compact font format as
specified by [9, 10].

CharStrings
Dictionary

A dictionary associating character names (the keys in the
dictionary) with glyph descriptions in PostScript Type1 Font file.
See [5], Chapter 6.

CharStrings
INDEX

An array of all glyph descriptions in CFF Font. See [9], Section 14.

GID An index used to identify glyph description either in the Charstings
INDEX of the CFF Font or in “glyf” table of the TrueType or
OpenType Font.

OpenType Font OpenType font file as specified by technically equivalent
documents [3, 4].

PDF Font
Descriptor
Dictionary

A font descriptor dictionary referred by FontDescriptor key in the
PDF Font Dictionary and specified in ISO 32000-1:2008, 9.8.

PDF Font
Dictionary

Either a simple font dictionary as specified by ISO 32000-1:2008,
9.6 or a CIDFont dictionary as specified in ISO 32000-1:2008,
9.7.4.

PDF Font File
Stream

A PDF stream containing the embedded font program (file)
referred by one of the keys FontFile, FontFile2, FontFile3 in the
PDF Font Descriptor Dictionary and specified in ISO 32000-
1:2008, 9.9.

PDF Font Type The value of the key Subtype in the PDF Font Dictionary.

PostScript
Type1 Font

Type1 font file in PostScript format as specified by [5].

TrueType Font TrueType font file as specified by technically equivalent
documents [1, 2].

TrueType/OpenT
ype table

A named byte range of the TrueType or OpenType font file as
defined in [1-4].

198

H.3 Formats of embedded font files
PDF specification supports the following formats of embedded font files:

PDF Font Type Key in the
PDF Font
Descriptor
Dictionary

Value of Subtype
key in the PDF
Font File Stream

Font file format Normative
reference

Type1,
MMType1

FontFile - PostScript
Type1

[5, 12]

Type1,
MMType1

FontFile3 Type1C CFF [9]

Type1 FontFile3 OpenType OpenType with
“CFF” table

[3,4,9]

TrueType FontFile2 - TrueType [1,2]

TrueType FontFile3 OpenType OpenType with
“glyf” table

[3,4]

CIDFontType0 FontFile3 CIDFontType0C CFF [9]

CIDFontType0 FontFile3 OpenType OpenType with
“CFF” table

[3,4,9]

CIDFontType2 FontFile2 - TrueType [1,2]

CIDFontType2 FontFile3 OpenType OpenType with
“glyph” table

[3,4]

H.4 Embedded font file requirements

H.4.1 PostScript Type1 Fonts

The values of keys Length1, Length2, Length3 of the PDF Font File Stream shall be correct.

The general font file organization shall comply to [5], Chapter 2.

The glyph with name “.notdef” shall be present in the CharStrings dictionary.

The font file dictionary shall contain a valid Encoding array as specified by [5], 2.2 and [12], 5.3.

199

Names of all glyphs referenced for rendering shall be present in the CharStrings dictionary. A glyph name
is referenced for rendering if it is mapped from the character referenced for rendering via the Encoding
mechanism for Type1 fonts as specified by ISO-32000:1, 9.6.6.2.

If the CharSet key is present in the PDF Font Descriptor Dictionary, the names of all glyphs specified in its
value shall be present in the font CharStrings dictionary, regardless of whether this glyph is referenced for
rendering or not.

Charstrings for all glyphs in 4.1.2, 4.1.4, 4.1.5 shall comply with the charstring encoding specification in [5],
Chapter 6.

Glyph widths referenced for rendering shall be consistent with the width information in PDF Font Dictionary.
Glyph widths in the PostScript Type1 file are determined by the Metrics dictionary of the font file (see [5],
2.2; [12], 5.9.2) or, if it is not present, by “hsbw” or “sbw” operator in the glyph charstring (see [5], 6.4).

H.4.2 Compact Font File (CFF) in case of Type1 and MMType1 PDF Font Types

The general CFF Font file structure shall comply to [9], Section 2 and shall consist only of a single font. In
particular, it shall contain a valid Header, Name INDEX, Top DICT INDEX, String INDEX, Global Subr
INDEX, Encoding, Charset, CharStrings INDEX, Font DICT INDEX, Private DICT.

All GIDs referenced for rendering from CIDs via the algorithm defined in ISO 32000-1:2008, 9.7.4.2 shall be
present in the CharStrings INDEX.

If the CharSet key is present in the PDF Font Descriptor Dictionary, the names of all glyphs specified in its
value shall be present in the Charset structure, regardless of whether this glyph is referenced for rendering
or not.

GIDs for all glyphs in 4.2.2, 4.2.3 identified via Charset structure, shall point to valid charstings in the
CharStrings INDEX as specified by [9], Section 14; [10].

Glyph widths referenced for rendering shall be consistent with the width information in PDF Font Dictionary.
Glyph widths in the CFF file are determined by “hsbw” or “sbw” operator in the glyph charstring of Type1, or
as a first number of the Type2 charstring serving as a difference to nominalWidthX, or, if omitted, as a
defaultWidthX (see [10], 3.1). The nominalWidthX and defualtWidthX are defined in the Private DICT of the
CFF font.

H.4.3 Compact Font File (CFF) in case of CIDFontType0 PDF Font Type

The general CFF Font file structure shall comply to [9], Section 2 and shall consist only of a single font. In
particular, it shall contain a valid Header, Name INDEX, Top DICT INDEX, String INDEX, Global Subr
INDEX, CharStrings INDEX, Font DICT INDEX, Private DICT and, optionally, the FDSelect structure. Both
the Encoding and the Charset structures are optional are not used for locating glyph charstings.

All GIDs mapped from CIDs used for rendering via an algorithm defined in 9.7.4.2 shall be present in the
font file and correctly encoded.

Glyph widths referenced for rendering shall be consistent with the width information in PDF Font Dictionary.
Glyph widths in the CFF file are determined by “hsbw” or “sbw” operator in the glyph charstring of Type1, or
as a first number of the Type2 charstring serving as a difference to nominalWidthX, or, if omitted, as a
defaultWidthX (see [10], 3.1). The nominalWidthX and defualtWidthX are defined in the Private DICT of the
CFF font.

200

H.4.4 TrueType Font File in case of TrueType PDF Font Type

The font shall contain the following minimal set of tables: “cmap”, “glyf”, “head”, “hhea”, “hmtx”, “loca”,
“maxp”. The “cvt ”, “fpgm”, and “prep” tables must also be included if they are required by the font
instructions. All these tables shall comply to the data format requirements of [1,2].

If the PDF Font Descriptor Flags key identifies the PDF Font as non-symbolic (ISO 32000-1:2008, 9.8.2)
and the PDF Font Encoding defines Differences array, then the “cmap” table shall contain at least Microsoft
Unicode (3,1 – Platform ID=3, Encoding ID=1) encoding.

In case of PDF/A-1 standard, if the PDF Font Descriptor Flags key identifies the PDF Font as symbolic
(ISO 32000-1:2008, 9.8.2), then the “cmap” table shall contain exactly one encoding.

In case of either PDF/A-2 or PDF/A-3 standard, if the PDF Font Descriptor Flags key identifies the PDF
Font as symbolic (ISO 32000-1:2008, 9.8.2), then the “cmap” table shall either contain exactly one
encoding or at least Microsoft Symbol (3,0 – Platform ID=3, Encoding ID=0) encoding. If Microsoft Symbol
encoding is present, the range of character codes shall be one of these: 0x0000 - 0x00FF, 0xF000 -
0xF0FF, 0xF100 - 0xF1FF, or 0xF200 - 0xF2FF.

All GIDs of glyphs used for rendering, as determined by the algorithm described in ISO 32000-1, 9.6.6.4,
shall be present in the “glyf” table and their instructions shall comply with [1,2].

All GIDs of glyphs used for rendering, as determined by the algorithm described in ISO 32000-1, 9.6.6.4,
shall be present in the “hmtx” table and their widths shall be consistent with widths information of the PDF
Font Dictionary.

H.4.5 TrueType Font File in case of CIDFontType2 Font Type

The font shall contain the following minimal set of tables: “glyf”, “head”, “hhea”, “hmtx”, “loca”, “maxp”. The
“cvt ”, “fpgm”, and “prep” tables must also be included if they are required by the font instructions. The
tables “vhea” and “vmtx” shall also be included if the PDF Font is used for vertical writing. All these tables
shall comply to the data format requirements of [1,2].

All GIDs of glyphs used for rendering, as determined by the algorithm described in ISO 32000-1, 9.7.4.2,
shall be present in the “glyf” table and their instructions shall comply with [1,2].

All GIDs of glyphs used for rendering, as determined by the algorithm described in ISO 32000-1, 9.7.4.2,
shall be present in the “hmtx” table and their widths shall be consistent with widths information of the PDF
Font Dictionary (keys W and DW). If the PDF Font is used for vertical writing, the same condition applies to
“vmtx” table and metrics information of the PDF Font Dictionary (keys W2 and DW2).

H.4.6 OpenType fonts

An OpenType font file shall not contain both “glyf” and “CFF ” tables.

If an OpenType font file contains “glyf” table shall comply either with the requirements of Section 4.4 in
case of TrueType PDF Fonts or with the requirements of Section 4.5 in case of CIDFontType2 PDF Fonts.

If an OpenType font file contains “CFF ” table, its data shall comply either with the requirements of Annex
G, 4.2 in case of Type1 or MMType1 PDF Fonts or with the requirements of Annex G 4.3 in case of
CIDFontType0 PDF Fonts.

	Introduction
	Table of Contents
	Glossary of Terms
	Community Engagement
	CE Introduction
	CE 1 Stakeholders
	CE 2 Community development activities
	CE 2.1 veraPDF ecosystem
	CE 2.2 Specific communities
	CE 2.2.1 Industry and Standards
	CE 2.2.1.1 Adoption factors
	CE 2.2.1.2 PDF Validation Technical Working Group (TWG)
	CE 2.2.1.3 Progress in Phase 1

	CE 2.2.2 Other domains / communities / standards
	CE 2.2.2.1 Specific extensions
	CE 2.2.2.2 Impact on extensibility
	CE 2.2.2.3 Progress in Phase 1

	CE 2.2.3 Memory institutions
	CE 2.2.3.1 Registry of Policy Profiles
	CE 2.2.3.2 Impact on OAIS-archive functions
	CE 2.2.3.3 Progress in Phase 1

	CE 3 Contribution guidelines
	CE 3.1 Functional and Technical Specifications
	CE 3.2 Corpora
	CE 3.2.1 Validation Corpora
	CE 3.2.2 Policy Checking Corpus
	CE 3.2.3 Progress in Phase 1

	CE 3.3 Code
	CE 3.3.1 Code acceptance

	CE 3.4 Messaging
	CE 3.5 Documentation

	Functional Specification
	FS Introduction
	FS 1 PDF/A Validation in context
	FS 1.1 ‘Shall’, ‘should’, and ‘may’ statements
	FS 1.2 PDF/A, PDF, and associated standards and specifications
	FS 1.2.1 PDF/A requirements beyond PDF syntax
	FS 1.2.2 What PDF/A is not

	FS 2 Conformance Checker components
	FS 2.1 veraPDF Implementation Checker
	FS 2.1.1 Use cases
	FS 2.1.1.1 Generate a PDF Features Report
	FS 2.1.1.2 Check the conformance of a PDF Document to a PDF/A Flavour

	FS 2.1.2 Functional description
	FS 2.1.3 Functional architecture

	FS 2.2 veraPDF Metadata Fixer
	FS 2.2.1 Use cases
	FS 2.2.1.1 Remove invalid PDF/A Metadata and produce a new PDF Document
	FS 2.2.1.2 Fix PDF Metadata and produce a new PDF Document

	FS 2.2.2 Functional description
	FS 2.2.3 Functional architecture

	FS 2.3 veraPDF Policy Checker
	FS 2.3.1 Use cases
	FS 2.3.1.1 Check the conformance of a PDF Document to institutional policy requirements
	FS 2.3.1.2 Author a new Policy Profile

	FS 2.3.2 Functional description
	FS 2.3.3 Functional architecture

	FS 2.4 veraPDF Reporter
	FS 2.4.1 Use cases
	FS 2.4.1.1 Obtain a Machine-readable Report (PDF Features, Validation, Policy, Metadata Fixing)
	FS 2.4.1.2 Obtain a Human-readable Report (PDF Features, Validation, Policy, Metadata Fixing)
	FS 2.4.1.3 Obtain Machine-readable or Human-readable Reports for a batch of PDF Documents
	FS 2.4.1.4 Author a new Report Template

	FS 2.4.2 Functional description
	FS 2.4.3 Functional architecture

	FS 2.5 veraPDF Shell
	FS 2.5.1 User stories
	FS 2.5.1.1 Conformance Checking at Digitization
	FS 2.5.1.2 Conformance Checking at Creation Time
	FS 2.5.1.3 Pre-submission Conformance Checking by Content Producers
	FS 2.5.1.4 Conformance Checking at transfer
	FS 2.5.1.5 Archival Information Update at Ingest
	FS 2.5.1.6 Conformance Checking at migration
	FS 2.5.1.7 Batch or periodical Conformance Checking

	FS 3 Conformance Checker extensions
	FS 3.1 Parsing PDF Documents and Embedded Resources
	FS 3.1.1 Use cases
	FS 3.1.1.1 PDF Parsers
	FS 3.1.1.2 Embedded Resource Parsers

	FS 3.1.2 Functional description
	FS 3.1.3 Functional architecture

	FS 3.2 Integrations with other software
	FS 3.2.1 JHOVE

	FS 4 Interfaces
	FS 4.1 Standalone Distribution
	FS 4.1.1 Command Line Interface (CLI)
	FS 4.1.2 Desktop Graphical User Interface (GUI-D)

	FS 4.2 Server Distribution
	FS 4.2.1 Web Graphical User Interface (GUI-W)

	FS 4.3 Command Line Interface examples
	FS 4.3.1 Implementation Checker and Metadata Fixer
	FS 4.3.1.1 Input
	FS 4.3.1.2 Output
	FS 4.3.1.3 Parameters
	FS 4.3.1.4 Invocation

	FS 4.3.2 Policy Checker
	FS 4.3.2.1 Input
	FS 4.3.2.2 Output
	FS 4.3.2.3 Parameters
	FS 4.3.2.4 Invocation

	FS 4.3.3 Reporter scenarios
	FS 4.3.3.1 Input
	FS 4.3.3.2 Output
	FS 4.3.3.3 Parameters
	FS 4.3.3.4 Invocation

	Technical Specification and Software Architecture
	TS Summary of technologies
	TS 1 Architecture and Design
	TS 1.1 Design Principles
	TS 1.1.1 Simplicity
	TS 1.1.2 Modularity
	TS 1.1.3 Reliability
	TS 1.1.4 UML Diagramming Conventions

	TS 1.2 Top level architecture
	TS 1.3 Conformance Checker API
	TS 1.4 Domain Model
	TS 1.4.1 Primitive Types & ByteSequence Entities
	TS 1.4.1.1 Primitive Types
	TS 1.4.1.2 ByteSequence
	TS 1.4.1.3 ByteSequenceLocation

	TS 1.4.2 Resource Entity, Representations, and Metadata
	TS 1.4.2.1 Resource

	TS 1.5 API Definition
	TS 1.5.1 Service Interfaces
	TS 1.5.1.1 SingleStateService
	TS 1.5.1.2 EnumeratedStateService
	TS 1.5.1.3 VariableStateService

	TS 1.6 veraPDF Framework
	TS 1.6.1 Conformance Checker API
	Interface based design
	Domain Model Types

	TS 1.6.2 Framework Core
	Use of Immutable Objects
	Favour composition over inheritance
	TS 1.6.2.1 Implementation Checker
	TS 1.6.2.2 Metadata Fixer
	TS 1.6.2.3 Policy Checker
	TS 1.6.2.4 Reporter

	TS 1.6.3 ByteSequence & Resource Helpers
	TS 1.6.3.1 ByteSequenceReaders
	TS 1.6.3.2 ByteSequenceWriters

	TS 1.6.4 Shell Services
	TS 1.6.4.1 Identifier Service
	TS 1.6.4.2 Caching and Storage Services
	TS 1.6.4.3 Scheduling Service

	TS 1.6.5 REST API

	TS 1.7 veraPDF Conformance Checker
	TS 1.7.1 ByteSequences and Resources
	TS 1.7.2 Conformance Checker components
	TS 1.7.2.1 Implementation Checker
	TS 1.7.2.2 Metadata Fixer
	TS 1.7.2.3 Policy Checker
	TS 1.7.2.4 Reporter

	TS 1.7.3 Physical Architecture
	TS 1.7.3.1 Standalone
	TS 1.7.3.2 Networked
	TS 1.7.3.3 World Wide Web
	TS 1.7.3.4 Legacy Systems
	TS 1.7.3.5 DIRECT Evaluation Framework
	TS 1.7.3.6 Scalability

	TS 2 Validation Model
	TS 2.1 Validation Model overview
	TS 2.2 Terminology
	TS 2.3 PDF Types Hierarchy
	TS 2.3.1 Core types
	TS 2.3.2 Cos types
	TS 2.3.3 PD types
	TS 2.3.4 Graphics operators model
	TS 2.3.5 External specifications

	TS 2.4 Object Properties
	TS 2.4.1 Examples of Properties

	TS 2.5 Association Graph
	TS 2.5.1 Examples of Association Links
	TS 2.5.2 Validation Context

	TS 2.6 Validation Rules
	TS 2.6.1 Examples of Validation Rules
	TS 2.6.2 Inheritance of Rules
	TS 2.6.3 Caching Check results

	TS 2.7 Integration with third-party tools
	TS 2.8 Validation algorithm
	TS 2.9 The formal syntax for the Validation Model

	TS 3 Validation Profile format
	TS 3.1 Profile overview
	TS 3.1.1 XML namespace and schema
	TS 3.1.2 Text messages

	TS 3.2 Profile structure
	TS 3.2.1 Rules
	TS 3.2.1.1 Fix

	TS 3.3 Profile example

	TS 4 Machine-readable Report format
	TS 4.1 Report overview
	TS 4.1.1 XML namespace and schema
	TS 4.1.2 Paths and URLs
	TS 4.1.3 Text messages

	TS 4.2 Report structure
	TS 4.2.1 documentInfo
	TS 4.2.2 processingInfo
	TS 4.2.2.1 installationConfig
	TS 4.2.2.2 taskConfig
	TS 4.2.2.3 executionConfig
	TS 4.2.2.4 processMetrics

	TS 4.2.3 validationInfo
	TS 4.2.3.1.1 details

	TS 4.2.4 pdfFeatures
	TS 4.2.4.1 informationDict
	TS 4.2.4.2 metadata
	TS 4.2.4.3 documentSecurity
	TS 4.2.4.4 lowLevelInfo
	TS 4.2.4.5 Embedded files
	TS 4.2.4.6 iccProfiles
	TS 4.2.4.7 outputIntents
	TS 4.2.4.8 outlines
	TS 4.2.4.9 annotations
	TS 4.2.4.10 pages
	TS 4.2.4.10.1 resources
	TS 4.2.4.10.2 annotations

	TS 4.2.4.11 documentResources
	TS 4.2.4.11.1 graphicsState
	TS 4.2.4.11.2 colorSpace
	TS 4.2.4.11.3 xobjects

	TS 4.2.4.11.3 font

	TS 4.3 Report example

	TS 5 Policy Profile
	TS 5.1 Schematron overview
	TS 5.2 Using Schematron for Policy Checks
	TS 5.2.1 Policy requirement examples

	TS 6 Test framework
	TS 6.1 Terms and Definitions
	TS 6.2 Test corpora
	TS 6.2.1 Unit test files
	TS 6.2.2 Validator test corpora
	TS 6.2.3 Metadata Fixer test corpus
	TS 6.2.4 Policy test corpus
	TS 6.2.5 PREFORMA test corpus

	TS 6.3 Referenced files
	TS 6.4 Automation
	TS 6.4.1 Unit testing
	TS 6.4.2 Continuous integration
	TS 6.4.3 Virtualised build/test environment

	TS 7 Internationalization
	TS 7.1 Overview
	TS 7.2 Architecture
	TS 7.3 veraPDF TMX format details
	TS 7.3.1 TMX format overview
	TS 7.3.2 Implementation
	TS 7.3.3 Tools
	TS 7.3.4 Additional locale information

	TS 8 Report Template format
	TS 8.1 Overview
	TS 8.2 Accessibility

	TS 9 Integration with third-party tools
	TS 9.1 Overview
	TS 9.1.1 Command Line Interface
	TS 9.1.2 API Interface

	Annex A: Communications Plan
	A.1 Aims and objectives
	A.2 Conferences and events

	Annex B. Technical Milestones and Deliverables
	B.1 Phase 1 planning
	B.2 Phase 2 Planning

	Annex C: PDF/A Test Corpora Analysis
	C.1 PDF/A Test Suite
	C.2 Tagged PDF Test Suite
	C.3 PDF/A “Should” and “May” Clauses

	Annex D: PDFBox Feasibility Study
	D.1 Summary and recommendations
	D.2 Legal information
	D.3 Versions and update policy
	D.3.1 Version 2.0

	D.4 PDFBox open source project analysis
	D.4.2 PDFBox and Git/GitHub
	D.4.2.1 Candidate process for working with PDFBox mirror

	D.4.3 Continuous integration & static code analysis
	D.4.3.1 Travis-CI
	D.4.3.2 OPF Jenkins
	D.4.3.3 OPF Sonar

	D.4.4 Code quality
	D.4.4.1 Key metrics
	D.4.4.1.5 Project size
	D.4.4.1.2 Unit test coverage
	D.4.4.1.3 Comment coverage
	D.4.4.1.4 Complexity
	D.4.4.1.5 Technical debt

	D.4.4.2 Cross project comparison
	D.4.4.2.1 Size
	D.4.4.2.2 Test and comment coverage
	D.4.4.2.3 Complexity and technical debt

	D.4.5 PDFBox Analysis
	D.4.5.1 PDFBox Modules
	D.4.5.1.1 PDFBox Reactor
	D.4.5.1.2 PDFBox Parent
	D.4.5.1.3 PDFBox Application
	D.4.5.1.4 Preflight Application
	D.4.5.1.5 PDFBox
	D.4.5.1.6 Fontbox
	D.4.5.1.7 PDFBox Examples
	D.4.5.1.8 PDFBox Tools
	D.4.5.1.9 Preflight
	D.4.5.1.10 Xmpbox
	D.4.5.1.11 Summary of veraPDF dependencies

	D.4.5.2 Analysis of VeraPDF dependencies
	D.4.5.2.1 Size
	D.4.5.2.2 Test and comment coverage
	D.4.5.2.3 Complexity and technical debt

	D.5 PDFBox Preflight feasibility study
	D.5.1 PDFBox Preflight top level architecture
	D.5.2 PDFBox Preflight analysis
	D.5.3 PDFBox Preflight font validation

	D.6 XMPBox
	D.6.1 Supported XMP schemas

	D.7 PDF Document I/O
	D.7.1 PDF stream assumptions in PDFBox
	D.7.2 PDF parser

	D.8 Supported stream filters

	Annex E: License Compatibility
	E.1 Introduction
	E.2 PREFORMA requirements
	E.3 Rationale for reusing existing software
	E.4 Scenarios for reusing existing software
	E.4.1 Implementation Checker
	E.4.2 Metadata Fixer
	E.4.3 Policy Checker
	E.4.4 Reporter
	E.4.5 Shell
	E.4.6 High level dependencies
	E.4.6.1 Development toolset
	E.4.6.1.1 Development language
	E.4.6.1.2 Other tools

	E.4.6.2 Supporting Services

	E.5 Legal analysis
	E.5.1 Scenarios requiring license compatibility
	E.5.2 Open source license compatibility

	E.6 veraPDF licence compatibility
	E.6.1 Implementation Checker dependencies
	E.6.2 Metadata Fixer dependencies
	E.6.3 Policy Checker dependencies
	E.6.4 Reporter dependencies
	E.6.5 Shell dependencies
	E.6.6 High-level dependencies

	Annex F: Software and Demonstrator
	Annex G. ICC Profile Checks for PDF/A Validation
	G.1 Normative references
	G.2 Terminology
	G.3 ICC profile requirements
	G.3.1 Version information
	G.3.2 Device class
	G.3.3 Colour space
	G.3.4 Requirements for specific profile types
	G.3.4.1 Profile types
	G.3.4.2 Input profiles
	G.3.4.3 Display profiles
	G.3.4.4 Output profiles
	G.3.4.5 Profile connection space
	G.3.4.6 Required tags per each profile type

	G.3.5 Tag definitions

	Annex H. Embedded Font Checks for PDF/A Validation
	H.1 Normative references
	H.2 Terminology
	H.3 Formats of embedded font files
	H.4 Embedded font file requirements
	H.4.1 PostScript Type1 Fonts
	H.4.2 Compact Font File (CFF) in case of Type1 and MMType1 PDF Font Types
	H.4.3 Compact Font File (CFF) in case of CIDFontType0 PDF Font Type
	H.4.4 TrueType Font File in case of TrueType PDF Font Type
	H.4.5 TrueType Font File in case of CIDFontType2 Font Type
	H.4.6 OpenType fonts

