Conch — Conformance checking for audiovisual files

Project Acronym: PREFORMA

Grant Agreement number: 619568

Project Title: PREservation FORMAts for culture information/e-archives
Prepared by: MediaArea.net SARL

e Jérome Martinez
e Dave Rice

e Tessa Fallon

e Ashley Blewer

o FErik Piil

e Guillaume Roques

Prepared for: PREFORMA Consortium
Date: December 31, 2014 Revised Date: March 3, 2015
Licensed under: Creative Commons CC-BY v4.0

Summary: This report presents MediaArea’s research, planning, and design work to develop a shell and
conformance checker tentatively entitled “Conch” with a particular focus on Matroska, FF Video Codec 1
(FFV1), and Linear Pulse Code Modulated audio (LPCM).

« INTRODUCTION TO DESIGN SPECIFICATION
¢ Introduction of Featured Formats

— Matroska
— FF Video Codec 1 (FFV1)
— Linear Pulse Code Modulation (LPCM)

e Development of a conformance checker

— Implementation Checker

— Policy Checker

— Reporter

— Metadata Fixer

— Shell

— Optimization for Large File Size
— Focus on Fixity

— Reference and Test Files

e Intended Behavior by Use Case

— Overview
— Conformance Checking at digitisation Time
— Conformance Checking at Migration Time

e The team and roles
o Community

— Artefactual Systems and Archivematica
— Project Advisors
— Open Source Sponsorship

e Example of usage in European Memory Institutions
e Open Source Ecosystem

— Cross Platform Support
— Online Resources

— Community Interviews
— Advance Improvement of Standard Specification

Sustainable Open Source Business Ecosystem
Participation at Open Source conferences
Project Management Strategy

— Goal

— Method

— Justification/Purpose

— Intended Result

— Risk Analysis Model

— Internal Risk Assessment

Timeline
INTRODUCTION TO FUNCTIONAL SPECIFICATION

— Applicability
Portability
Scalability
Distribution
Modularity
Deployment
Interoperability

Global Architecture
Checker Architecture
Global Architecture
Architecture schema
Common to all elements

— File access

— File processing
— Internet Access
— Automation

— Batching

— Prioritization
RESTful API
— Offline Access

Core (Controller)

Database

Scheduler

Files listener

Implementation checker and Metadata Grabbing Module
Policy checker

Reporter

User interface

Checker Architectural Layers
Transport layer

— Conch: File on disk or direct memory mapping
— Plugin integration proof of concept: libcURL

Container/Wrapper implementation checker

— Conch
— Plugin integration proof of concept: mkvalidator
— Optional

Container /Wrapper Demultiplexing

— Conch
Stream /Essence implementation checker

— Conch
— Plugin integration proof of concept: jpylyzer
— Optional

Stream/Essence decoder

— Conch
— Plugin integration proof of concept: OpenJPEG

Container/Wrapper vs Stream/Essence Coherency Check
— Conch

Baseband Analyzer
— Conch

Implementation Checker Functional Requirements

— Introduction

— Registry of Checks

— Demultiplexing

— Implementation Checker

Policy Checker Functional Requirements

— Policy Checker Graphical User Interface
— Design & Functional Requirements

Policy Checker Command Line Interface

— Functional Overview
— Design and Functional Requirements

Metadata Fixer Functional Requirements

— Introduction to Graphical User Interface
— Design & Functional Requirements

Metadata Fixer Command Line Interface
— Functional Overview
Reporter Functional Requirements

Functional Overview

Design and Functional Requirements
Contents

Reporter Graphical User Interface

— Reporter Command Line Interface

— Reporter Web User Interface

Style Guide
Source Code Guide

Portability
Modularity
Deployment
APIs

Open Source Practices

— Development
— Open Source Platforms

Contribution Guide

— File Naming Conventions

— Rules for Qt/C++ code

— Guidelines for C++ code is as follows:
— Rules for contributing code

— Rules for contributing feedback

— Linking

— Test Files

e Release Schedule
o License
o Conclusion

INTRODUCTION TO DESIGN SPECIFICATION

The PREFORMA challenge illuminates and responds to a significant and real obstacle that faces the
preservation community today. This report details MediaArea’s design plan to create a toolset (tentatively
entitled “Conch”) consisting of an implementation checker, policy checker, reporter, and fixer of a select
list for formats.

As preservation workflows have incorporated digital technology, significant amounts of careful research
have gone into the selection of file format recommendations, lists of codec specifications, and development
of best practices; however, despite the existence of such recommendations, there remains a lack of
assessment tools to verify and validate the implementation of such recommendations. A few validation
tools (such as mkvalidator) are produced alongside the development of their associated standards; however,
most file format specifications are not officially tied to any validation tool and are documented through a
human-readable narrative without equivalent computer-actionable code. Where a metadata standard
may be described in both a data dictionary and a computer-usable XML Schema, file formats standards
often lack a computer-usable verification method. The PREFORMA project recognizes this discrepancy
and the resulting long-term impacts on archival communities and seeks to fill in the gaps necessary to
provide memory institutions with levels of control to verify, validate, assess and repair digital collections.

MediaArea’s approach to this challenge centers on FOSS (Free and Open Source Software), modular design,
and interoperability and will rely strongly on Medialnfo (an open source MediaArea product) to meet this
challenge. Medialnfo is often advised as the first tool to use when a media file is not playable, allowing
the user to identify characteristics that would help find an appropriate playback or transcoding tools.
Medialnfo’s open licensing and agility in technical metadata reporting have encouraged its integration into
several archival repository systems and Open Archival Information System (OAIS)-complaint workflows
to assist archival institutions with technical control of collections.

MediaArea sees community involvement as a key factor of evaluating the success of the project. To
encourage this, during the prototype phase MediaArea will perform the development work for command
line utilities, graphical user interfaces, and documentation in publicly accessible repositories at github.com.
Mediaarea will also set up an online set of project resources such as public access to a corpus of test
media, an IRC channel, and a responsive public issue tracker.

In order to foster and demonstrate a focus on interoperability throughout the project, MediaArea will
work with Artefactual in order to facilitate integration of resulting project components into Archivematica,
a digital repository focused on OAIS. This collaboration will bring the availability of additional OAIS and
digital preservation expertise to the project and provide an additional means for the project deliverables
to be made available to users.

Introduction of Featured Formats

During the development phases MediaArea will focus on one container format, Matroska, and two streams,
Linear Pulse Code Modulation (LPCM) and FF Video Codec 1 (FFV1). The design work of MediaArea
will address formats and codecs through a modular architecture so that other formats or codecs may
easily be added alongside or after development.

Matroska, FFV1, and LPCM describe very unique concepts of information including:

e a container format, Matroska
e an audio stream, LPCM
e a video stream, FFV1

These three information concepts will inform distinct user interface and reporting design in order to
process these concepts through differing strategies. For instance, reporting on the status of 100,000 of
video frames within a video recording may be done more efficiently in a different interface as one designed
to communicate the hierarchical structure of a file format.

Additionally other formats currently being addressed by PREFORMA fit within these three conceptual
categories; for instance, PDF and TIFF are formats (containers) and JPEG2000 is a video stream. These
three concepts affect the design of an overall application shell as conformance information for each
category can have its own optimized user interface.

Matroska

Matroska is a open-licensed audiovisual container format with extensive and flexible features and an
active user community. The format is supported by a set of core utilities for manipulating and assessing
Matroska files, such as mkvtoolnix and mkvalidator.

Matroska is based on EBML, Extensible Binary Meta Language. An EBML file is comprised of one of
many defined “Elements”. Each element is comprised of an identifier, a value that notes the size of the
element’s data payload, and the data payload itself. The data payload can either be stored data or more
nested elements. The top level elements of Matroska focus on track definition, chapters, attachment
management, metadata tags, and encapsulation of audiovisual data. The Matroska element is analogous
to QuickTime’s atom and AVI’s chunk.

Matroska integrates a flexible and semantically comprehensive hierarchical metadata structure as well as
digital preservation features such as the ability to provide Cyclic Redundancy Check (CRC) checksums
internally per selected elements. Because of its ability to use internal, regional CRC protection it is
possible to update a Matroska file during OAIS events without any compromise to the fixity of its
audiovisual payload.

Matroska has well written documentation and a draft specification but is not defined through an external
standards organization although some drafts for such work have already been produced.

FF Video Codec 1 (FFV1)

FFV1 is an efficient lossless video stream that is designed in a manner responsive to the requirements of
digital preservation. Version 3 of this lossless codec is highly self-descriptive and stores its own information
regarding field dominance, aspect ratio, and colorspace so that it is not reliant on a container format to
store this information. Other streams that rely heavily on its container for technical description often
face interoperability challenges.

FFV1 version 3 mandates storage of CRCs in frame headers to allow verification of the encoded data and
stores error status messages. FFV1 version 3 is also a very flexible codec allowing adjustments to the
encoding process based on different priorities such as size efficiency, data resilience, or encoding speed.

The specification documentation for FFV1 is partially complete and has recently been funded by vendors
utilizing FFV1 as a codec for audiovisual preservation and large-scale digitisation efforts.

Linear Pulse Code Modulation (LPCM)

Linear Pulse Code Modulation (LPCM) is a ubiquitous and simple audio stream. PCM audio streams
may be comprised of signed or unsigned samples, arranged in little-endian or big-endian arrangements,
in any number of audio channels. PCM is very flexible but is not self-descriptive. A raw PCM file can
not properly be decoded without knowing the sample encoding, channel count, endianness, bit depth,
and sample rate. LPCM is typically dependent on its container format (such as WAV) to store sufficient
metadata for its decoding.

Because PCM streams contain only audio samples without any codec structure or metadata within
the stream, any data by itself could be considered valid PCM and decoded as audio. Determining the
conformity or technical health of PCM data requires the context of information provided by its container
format.

Development of a conformance checker

MediaArea’s design of the conformance checker is intended to allow interoperability between the con-
formance checkers of PREFORMA'’s other suppliers so that users may integrate multiple conformance
checkers within a single ‘shell.” The PREFORMA project is comprised of four components:

e implementation checker
e policy checker

e reporter

« metadata fixer

The PREFORMA project must document and associate implementation or policy rules with data types
(such as formats, streams, frames, etc) and authorities (such as specifications, community practices,
or the local rules of a memory institution). MediaArea recommends that communication between the
implementation checker and the shell be performed through an API designed via collaboration of the
PREFORMA suppliers.

Implementation Checker

For each supported format (Matroska, FFV1, and LPCM), the implementation checker should assess
compliance and/or deviation between files and a series of adherence checks which are written by dissecting
rules and logic from each format’s underlying specifications, including rules that may be deduced or
inferred from a close reading of the specification or related authoritative documentation. MediaArea has
drafted registries of conformance rules within the PREFORMA design phase and plans to collaborate
with each format’s specification communities to refine them. See the Conformance Check Registry.

For streams such as FFV1, implementation checks may be performed frame-by-frame to discover frame-
specific issues such as CRC mismatches, invalid frame headers, or incomplete frames. Frame-by-frame
conformance assessments will naturally be time consuming as nearly the entire file must be read. In order
to accommodate user’s various time priorities the checker will use options to perform checks on the first
few frames of a stream, a percentage of the frames, or all of the frames.

MediaArea has drafted a registry of metadata elements to be used in described an implementation check,
which provides unique identifier, the scope, and underlying rationale and authority for the check. Code
created to preform checks will be internally documented with references to conformance check’s unique
identifiers, so that MediaArea may create resources for each conformance check that relate the identity of
the check, its underlying authority, sample files, and associated code.

Policy Checker

For each format addressed through a implementation checker, MediaArea will create a vocabulary list of
technical metadata and contextual descriptions. Additionally, MediaArea will define a list of operators
to enable various comparators between the actual technical metadata and any expected user-provided
metadata. Such defined language will allow users to make policy check expressions such as:

« FFV1.gop_size MUST EQUAL “1”

« FFVlslice_crc MUST BE_ENABLED

« FFVl.version GREATER_THAN_OR_EQUAL “3”

« MKV.tag BARCODE MUST START WITH “ABC”

« MKV.tag. DATE_DIGITZED IS_ BEFORE “2014-01-01”

« MKV.tagISBN MATCHES_REGEX “(?=[-0-9xX]{13})(? : [0 — 9] + [<])3[0 — 9] % [+ X0 — 9]"

MediaArea proposes that PREFORMA suppliers collaborate to define a common expression for sets of
policy checks via an XML Schema, associated data dictionary, and vocabulary of comparative operators.
The collaboration would include agreement and definition on the operators (“Greater Than”, “Starts
With”, etc) of the policy checks and attempts to normalize technical metadata between common formats
where they have overlapping concepts. Each policy checker would produce a vocabulary of technical
metadata specific to its format for policies to be checked against as well as inclusion within an API so
that the shell can access the possible operators of any enabled implementation checker.

MediaArea will provide sample sets of policy checks based on interviews with memory institutions and
community practice.

Reporter

MediaArea proposes that PREFORMA suppliers collaborate to create a common XML Schema to define
the expression of PREFORMA reporting (referred herein as “PREFORMAXML”). The schema should
define methods to express technical metadata and relates checks to formats/streams (including components
of formats and streams such as frames or attachments). The XML Schema should encompass not only
information about the files being assessed but also the conditions and context of the particular use (which
shell was used, with what policy sets, at what verbosity, etc). The XML Schema should be supported by
a data dictionary that is also collaboratively written by PREFORMA suppliers. MediaArea anticipates
that the implementations and features performed upon the basis of a common XML Schema may vary
from supplier to supplier or per implementation checker, but that adherence to a common schema is
essential to interoperability and consistent user experience amongst implementation checkers.

The PREFORMAXML schema should accommodate the expression of results from multiple implementa-
tion checkers upon a single file. For example, a Matroska file that contains a JPEG2000 stream, a FFV1
stream, and a LPCM stream should be able to express one XML element about the file with sub-elements
about each conformity check to reduce redundancy.

Because of Matroska’s flexibility, ancillary objects like PDFs, JPEG2000 images and CRC files may also
be added as attachments.

MediaArea plans to include these features commonly within MKV, FFV1, and LPCM reporters:

o Export of a standardized PREFORMAXML

o Export PREFORMAXML with gzip compression (to reduce the impact of large and highly verbose
XML files)

e Export of the same data within a semantically equivalent JSON format

o Other functions based on PREFORMAXML (such as generation of PDF formats or summarization
of multiple collections of PREFORMAXML) will happen within the “Shell” component

Metadata Fixer

MediaArea will produce a fixer that allows for editing the file. Enabling this function will be performed
with a substantial amount of caution as in some cases a user could use it to change a file considered
a preservation master. The fixer will support assessing a file first to determine the risk of editing a
structurally unhealthy file and provide suitable levels of warning to the user.

The metadata fixer shall support both direct editing on the input file (with warning) or producing a new
output file as a copy that the metadata change as requested.

The metadata fixer will support comprehensive logging of the change and offer options to log the
performance of the edit itself with the file if it has a means to accommodate it (such as Matroska).

In addition to metadata manipulation the fixer will accommodate structural fixes to improve the structural
health of the file, such as repairing Matroska Element order if ordered incorrectly, or validating or adding
Matroska CRC Elements at selected levels, or fixing EBML structures of truncated Matroska files.

Substantial care should be exercised to ensure that the implementation checker properly associates risk,
user warnings, and assessments with each fix allowed. In order to allow a fix the software must properly

understand and classify what may be fixed and be aware of how the result may be an improvement.
Adjustments directly to a preservation file must be handled programmatically with great caution with
diligent levels of information provided to the user.

An example of a fix that could be enabled in the RIFF format could be verifying that any odd-byte
length chunk is properly followed by a null-filled byte. Odd-byte length chunks that do not adhere to
this rule cause substantial interoperability issues with data in any chunk following the odd-byte length
one (this is particularly found in 24 bit mono WAV files). If the odd-byte length chunk is not followed
by a null-filled padding byte, then most typically the next chunk starts where the padding byte is and
the padding byte may be inserted so that other following chunks increase their offset by one byte. This
scenario can be verified by testing chunk id and size declaration of all following bytes so that the software
may know beforehand if the fix (inserting the null-filled padding byte) will succeed in correcting the RIFF
chunk structure’s adherence to its specification.

Fixes for Matroska files could include fixing metadata tags that don’t include a SimpleTag element or
re-clustering frames if a cluster does not start on a keyframe.

Because many files focused on with FFV1 and Matroska implementation checkers will be quite large,
MediaArea plans to provide options to either rewrite the original file with the check or edit the file in
place so that the file is only changed according to the fix that is request. With the latter option is the
user is ‘fixing’ the metadata in a 50 gigabyte Matroska file only the last few megabytes of the Matroska
tagging element may be rewritten without a requirement to rewrite the non tagging elements at the
beginning of the file (MediaArea deployed a similar feature within BWF MetaEdit).

Shell

The shell will coordinate the actions of the implementation checker, policy checker, reporter and fixer. As
PREFORMA seeks that the shell developed by each supplier be modular and support each supplier’s
conformance checker(s), MediaArea encourages all suppliers to work collaboratively to negotiate API
documentation to support not only our own interoperability but also third-party development of additional
implementation checkers to utilize the produced shells.

The development of the shell will strive to facilitate an intuitive and informed use by memory institutions
at both expert and non-expert levels. The shell will include substantial internal documentation that
mimics the online resources that we will provide so that the shell and implementation checker function
well offline.

MediaArea will implement a scheduling service within the shell so that large tasks may be performed
overnight or according to a defined schedule. MediaArea will enable the shell to load queues of files from
lists of filepaths or URLs. Because of the size of data involved in audiovisual checkers MediaArea will
give priority to designing the shell and implementation checker to perform multi-threaded and optimized
processing.

The shell produced will support all functions and requirements of the implementation checker as described
as an independent utility and also support:

e Allow the user to open one or many files at a time.

o Allow the user to queue simultaneous or consecutive file analysis.

o Allow the user to select how comprehensive or verbose an conformance check may be (for instance,
samples frames or all frames of video).

e Enable the user to select sections of conformance checks or sets of conformance checks that they
may wish to ignore.

o Enable the user to associate certain actions or warnings with the occurence of particular checks.

e Provide feedback and status information live during the file analysis.

o (For Matroska) Present a user interface that displays the hierarchical EBML structure of the file
with the corresponding policy outcome for each policy check.

o (For FFV1) Present a user interface that displays frame bitstream in a table and enable the user to
filter the presentation of frame bitstream according to warnings or coherency events (for example,
discontinuous aspect ratio).

Policy Checker (Shell) The shell produced will support all functions and requirements of the policy
checker as described as an independent utility and also support:

e Allow PREFORMA-supported technical metadata vocabularies to be imported or synchronized
against an online registry.

e Provide an interface for the user to import, create, edit, or export a valid set of policy checks.

o Implement selected set of policy checks on all open files or selected files.

e Present the outcome of policy checks in a manner that allows comparison and sorting of the policy
status of many files.

o Allows particular sets of policy to be associated with particular sets of files, based on file identification
or naming patterns.

o (For Matroska) Present a user interface that displays the hierarchical EBML structure of the file
with the corresponding policy outcome for each policy check.

e Can display the FFV1 bitstream.

Reporter (Shell) The shell produced will support all functions and requirements of the reporter as
described as an independent utility and also support:

o Export of the PREFORMAXML data at user-selected verbosity levels in a PDF format, which data
visualizations supplied where helpful.

« Ability to read a collection of PREFORMA XML documents and provide a comprehensive summary
and technical statistics of a collection to allow for prioritization, comparison, and planning.

Fixer (Shell) The shell produced will support all functions and requirements of the reporter as
described as an independent utility and also support:

o Allow for single file or batch editing of file format metadata.

o Allow for selected metadata to be copied from one file to another or from one file to all other open
files.

e Allow for file format metadata to be exported and imported to CSV or XML to enable metadata
manipulation in other programs to then be imported back into the Shell and applied to the associated
files.

o (For Matroska) Present a user interface that displays the hierarchical EBML structure of the file
and allows the user to create, edit, or remove (with warning) any EBML element and display the
associated policy or implementation check that corresponds with such actions.

Interfaces The selected formats (MKV, FFV1, and LPCM) represent substantially distinct concepts:
container, video, and audio. The optimization of a implementation checker should utilize distinct interfaces
to address the conformance issues of these formats, but allow the resulting information to be summarized
together.

Assessment of file conformance can be displayed via a graphical user interface or a command line interface.

An interface for assessing conformance of FFV1 video could enable review of the decoded FFV1 frames
(via a plugin) in association with conformance data so that inconsistencies or conformity issues may be
reviewed in association of the presentation issues it may cause.

MediaArea proposes an interface to present conformity issues for audio and video streams (FFV1 and
LPCM) on a timeline, so that conformance events, such as error concealment or crc validation issues may
be reviewed effectively according to presentation, parent Matroska block element, or video frame.

For deep analysis, a distinct interface that allows for its hierarchical structure to be reviewed and navigated.
The presentation should allow for MKV and FFV1 elements to be expanded, condensed, or filtered
according to element id or associated conformity issues.

A summary of the file properties can also be displayed via a command line interface for quick reference or
export.

File View Import Export Help

File offset Frame number Tool Type Layer Issue Details
FFV1.mkv xﬂUﬂUUlB Implementation Error Matroska DocTypeVersio., DocTypeReadV..
FFVL.mkv Gx(]G(]G(]lB Policy Errar Matroska DocTypeVersion DocTypeReadV...
FFVL.mkv 000004567 0 Implementation Error FFV1 CRC not valid CRC is present ...
FFVL.mkv 000004567 0 Policy Errar FFV1 micro_version version=3, micr...
FFV1.mkv Implementation Warning Matroska CRC-32 missing Segment at offs...
FFV1.mkv Implementation Error w-check Width Coherency Matroska width...
FFVL.mkv Policy Error FFV1 Chroma subsa... is4:2:2, Policy i...
FFV1.mkv Paolicy Error FFV1 bit depth is & bit, Policy is...
FFV1 - File 2.mkv Policy Error FFV1 CRC missing is not present, ...
] 1 b

Figure 1: GUI conformance output sample

esting FFU1 _mku. ..

Implementation checking errors:
DocTypelersion too high DocTypeReadlerzion=4. must be lower than Doclypelersion=2
CRC not valid CRC is present but is not valid. frame corrupted
Width Coherency Matroska width=784. FFU1l width=728

Implementation checking warnings:
CRC-32 missing Segment at offset BxPBABEO122 iz missing mandatory CRC-32
icro_version version=3, micro_verzion=3, thiz micro-version iz pre—standard

i DocTypelersion

i Chroma subszampling
it depth

i CRC missing

DocTypeReadVersion=4. Policy iz DocTypeReadVersion<=3
iz 4:2:2, Policy is 4:4:4

iz B bit, Policy is >=18

iz not presence. Policy is presence mandatory

otal: 3 implementation errors. 2 implementation warnings. 4 policy errors

Figure 2: CLI conformance output sample

10

presentation_timestamp 00:00:00.880000
height 720
width 486
frame_size 220425
framemd5 f5d45832b63103108fe02d81§c098660 [Prudor: Clintias.
version 3
micro_version 4
cre value b3d4bat7
keyframe 1
coder_type 0
error_concealment 0
slices 4
slicecrc [764¢fa88 3ddalel1 dba7671¢c 4a3bbd9e]
colorspace_type 1
bits_per_raw_sample 8
chroma_planes 1
h_chroma_subsample 0
v_chroma_subsample 0
alpha_plane 1
num_h_slices_minus1 1
num_v_slices_minus1 1
other_data (38 bytes)
L4l I« @) plIp = a
—
Shuff
le
00:00:20.387 | selsctOption :| Frame 611
Figure 3: frame view mockup
o000 n

Preview Disabled

prasentation_timestamp 00:00:00.880000 slices 4
height 20 slicecre [764efa8B 3ddatel db47671c da3bbdoe]
width 486 colorspace_type

frame_sizo 220425 bits_per_raw_sample

framemd5 15d45832b63103108fc02d811c098620 chroma_planes

version 3 h_chroma_subsample

I L

micro_version 4 v_chroma_subsample
baadbat? St e [w4l |« @p | |p 2 A
keyframe 1 num_h_slicas_minus1 Shuff
coder_type 0 num_v_slices_minus1 e
error_concealment 0 other_data (38 bytes)

00:00:20.387 | SelectCpton : | Frame61l

Figure 4: frame scrolling mockup

11

e g i S
File Wiew Debug Help
(=R 00000000 Ebml (12 bytes)
7 00000000 Header (12 bytes)
ﬁ -0000000C Version - 1 (4 bytes)

B8

-00000010 ReadVersion - 1 (4 bytes)
00000014 MaxdDLength - 4 (4 bytes)
00000018 MaxSizeLength - & (4 bytes)
0000001 C DocType - matroska (11 bytes)
-- 0000001 C Header (3 bytes)

0888

‘... 000000LF Data: matroska
o 00000027 --=mmmmmm e
- 00000027 --- Matroska, accepted ---
- 00000027 --===m=mmmmmmmmmm e

- 00000027 DocTypeVersion - 4 (4 bytes)
- 0000002B DocTypeReadVersion - 2 (4 bytes)
- 0000002F Segment (12 bytes)
51~ 0000002F Header (12 brytes)
-0000003E SeekHead (6 bytes)
- D000007E Vioid (156 bytes)
-0000011A Info (12 bytes)
- 00000168 Tracks (12 bytes)

-- 00000168 Header (12 bytes)

El 00000177 TrackEntry (@ bytes)
i1 00000177 Header 9 bytes)
00000180 TrackMumber - 1 (3 bytes)
¢l 00000183 TrackUID - 1 (4 bytes)
00000187 FlagLacing - 0 (3 bytes)
00000184 Language - und (7 bytes)
00000191 TrackType - 1 (3 bytes)
00000194 DefaultDuration - 40000000 (8 bytes)
0000019C CodecID - V_MS/VFW/FOURCC (17 bytes)
000001LAD Video (9 bytes)
- 000001C8 CodecPrivate - Copy of vids (85 bytes)

G- 000001 C8 Header (3 bytes)
- 000001 CE Size: 81 (0:00000051)
- 000001 CF Width: 720 (0:2D0)
- 00000103 Height: 608 (0x260)
- 00000107 Planes: 1 (00001
- 00000109 BitCount: 24 (00018}
- 000001DE Compression: FFV1
- 000001DF Sizelmage: 1313280 (0:00140A00)
.. 000001E2 XPelsPerMeter: 0 (0000000007
.. 000001E7 YPelsPerMeter: 0 (0:00000000)
.. 000001EE ClrUsed: 0 (0:00000000)
. 000001EF Clilmportant: 0 (0:400000000)
= 000001F3 Private data (42 bytes)

- QO0001F3 ----mm i mmmmmmm e

- 000001F3 --- FFV1, accepted ---

- QO0001F3 ----mmmmmmmmmmm oo

... 000001F3 wersion: 3 (0:03)

- 000001F3 micro_version: 4 (0:04)

- 000001F2 coder_type: 0 (000

- 000001F2 colorspace_type: 0 (0:00)

- 000001F3 bits_per_raw_sample: 0 (0400

- 000001F6 chroma_planes: Yes

- 000001FE leg2(h_chroma_subsarmple): 1 (0sa01)

Figure 5: Medli%Info Windows

[

Umigque ID 1 285266298566315392049931599426139420988 (@xAGCDOE193816EB230CE5EBETE23TIIC)

Complete nome /Users/ashley/Downloads/pres_metadato_somple_20118688 . mkv

Format Matroska

Format version Version 2

File size 69.2 MiB

Duration 1 65 439ms

Overall bit rate 98.1 Mbps

Encoded by {Mame of the technician or organization responsible for the encoding and file creation process}
Encoded date UTC 2811-85-83 02:12:03

Mastered date UTC {Date and time of the file creation process. Enter in IS0 8681 format.}

Writing application : mkclean 8.8.2 r from libebml v1.2.8 + libmatroska v1.1.8 + mkvmerge v4.7.8 ('I Got The...') built on Jun 6 2011 16:40:20
Writing library Lavf53.2.8

Original source form {Physical format of the source tape. Vocabulary?}

0OriginalSourceForm/BarCode : {Barcode or other identifier from the tape.}

OriginalSourceForm/BarCode/source {name of barcode authority or creator; example "XYZ Archive Barcode"}

OriginalSourceForm/LABEL {The record label or imprint on the source media object.}

OriginalSourceForm/DATE_RECORDED {The time that the recording began. This is akin to the TDRC tag in ID3.}
OriginalSourceForm/condition {Comments on the condition of the source, any preparation for playback of the source tape (if relevant).}
OriginalSourceForm/initial_source_timeco : 01:82:15;10

OriginalSourceForm/initial_source_timeco : DropFrame=Yes / Z4HourMax=No / Is¥Visuols=No

EncodedBy/Url {URL for the technician or organization listed in ENMCODED_BY.}

EncodedBy/processing_actions {Description of any actions performed during processing, such as trimming silence.}

EncodedBy/ capture_software Blackmagic Media Express

EncodedBy/capture_software/version : 2.8.3

EncodedBy/capture_operating_system Ubuntu

EncodedBy/ capture_operating system/versi : 10.18

EncodedBy/capture_device : Decklink Studio SDI

EncodedBy/capture_device/manufacturer Blackmagic-Design

EncodedBy/capture_device/serial_no xyz6789

EncodedBy/ capture_device/settings {notes on adjustments or settings}

EncodedBy/playback_device SV0-5800

EncodedBy/playback_device/manufacturer : Sony

EncodedBy/playback_device/serial_no abcl234

EncodedBy/playback_device/settings {notes on adjustments or settings}

EncodedBy/playback_device/playback_signa : {Protocols used to transfer oudiovisual data between the playback deck and the capture device. example: Component}
Attochment Yes / Yes

1
: FFYV1
V_MS/VFW/FOURCC / FFVL

Duration 65 440ms
Width 728 pixels
Height 486 pixels
Display aspect ratio : 4:3
Frame rate mode Constant
Frame rate 29.97@ fps
Standard NTSC
Compression mode Lossless
Language : English
Default Yes
Forced No
Encoded date @ UTC 2011-85-83 92:12:03

Figure 6: CLI output sample

13

Optimization for Large File Size

Design of a implementation checker and shell should be considerate of the large file sizes associated with
video. For instance, an hour-long PAL FFV1 file (which contains 90,000 frames per hour) should provide
efficient access if cases where one FFV1 frame contains a CRC validation error.

A video implementation checker should be well optimized and multi-threaded to allow for multiple
simultaneous processes on video files. Additionally the implementation checker should allow a file to be
reviewed even as it is being processed by the implementation checker and allow assessment of files even
as they are being written.

Focus on Fixity

Both FFV1 and Matroska provide fixity features that serve the objectives of digital preservation by allowing
data to be independently validated without the requirement of managing an external checksumming
process. FFV1 version 3 in particular mandates CRCs on each frame. Matroska documents methods to
embed checksums (MD5) in Matroska elements to allow for future validation of any content.

Although the Matroska specification states that “All level 1 elements should include a CRC-32” this is
not the practice of most Matroska multiplexers. As part of the Fixer aspect of this project, MediaArea
proposes to develop a implementation checker that allows users to add CRC-32 to selected elements.

The advantages of embedded fixity in preservation media files are significant. The use of traditional
external checksums does not scale fairly for audiovisual files, because since the file sizes are larger than
non-audiovisual files there are less checksums per byte, which creates challenges in addressing corruption.
By utilizing many checksums to protect smaller amounts of data within a preservation file format, the
impact of any corruption may be associated to a much smaller digital area than the entire file (as the
case with most external checksum workflows).

Reference and Test Files

MediaArea anticipates creating a large corpus of reference and test files highlighting many of the issues
documented in our conformance check registry. After an intital clearing of any associated rights, such
files will be published under PREFORMA'’s selected open license agreements and disseminated for public
consumption. Curated references to other relevant reference and test files in sample libraries will also be
made available, which will include but not be limited to the following:

o Selections from http://samples.fimpeg.org

o Selections from http://archive.org

o Selections from http://multimedia.cx

o PDF/A files buggy files: http://www.pdfa.org/2011/08/isartor-test-suite/
o JPEG 2000 files: https://github.com/openplanets/jpylyzer-test-files

e Matroska buggy files: Homemade + request to Matroska mailing list

e FFVI1 buggy files: Homemade + request to FFmpeg mailing list

e LPCM files: Homemade

Together these references examinine a diverse set of file format expressions created by a variety of unique
software platforms.

Intended Behavior by Use Case
Overview

The following use cases are presented to describe intended behaviors of the implementation checker:

14

Conformance Checking in an Open Archival Information System (OAIS) PREFORMA ac-
knowledges the recommendations described in Consultative Committee for Space Data Systems’ Open
Archival Information System (OAIS) intended for the long term preservation of digital information
(CCSDS 650.0.-B-1/ISO 14721:2003). MediaArea aims to identify all relevant areas of the OAIS reference
model in relation to its proposed Conch conformance checker toolset. Moving foward, an additional

examination of other OAIS-related standards will further minimize any redundancies or incompatibility
with the PREFORMA project.

The OAIS reference model describes the transmission of data in the form of conceptual containers known
as Information Packages. In the OAIS environment, Submission Information Packages (SIPs) are created
by Producers (those who provide the information to be preserved), containing data objects with relevant
packaging information. After undergoing a series of processes performed by functional entities, SIPS are
transformed into Archival Information Packages (AIPs) and moved into an archive’s long-term storage.
Upon a query request by a Consumer, AIPs can be re-called and presented in the form of a Dissemination
Information Package (DIPs) to the Designated Community.

Conformance checking services play a major role in the OAIS reference model, specifically within the
functional entities during the intial transmission of the SIP. The Ingest Quality Assurance (QA) function
in particular validates SIPs in the temporary storage area prior to AIP generation. Here the Conch
conformance checker and its associated toolset would verify SIPs through implementation checking and
policy checking with rules and specifications defined by the Archive. Following an approved check, the
resulting report would be submitted as associated Preservation Description Information (PDI) within the
packaging information of the AIP. However, if a conformance check rejects a SIP, administrators may
choose either to consult the associated Producer, or correct related issues with the toolset’s metadata
fixer. (See Fig. “The OAIS Ingest Functional Entity with Conch Integration”)

Policy check expressions are also useful in other functions of OAIS workflows including Archival Storage
where format migration of AIPs is periodiclally undertaken. Here the comparators of technical metadata
between migrated data objects is key. A conformance checker would be implemented to map all
transformations through the collection of associated Preservation Description Information. For the
Matroska format in particular, individual sub-element CRCs can be submitted as a check expression and
later packaged with the AIP’s PDI information related to Fixity. This kind of self-descriptive information
can be especially useful tool for zeroing in on potentially corrupted areas of the data object.

For dissemination requests, the DIP generation fuction may include the encoding of an AIP data object
to a smaller, more compressed transmission format for access. This is especially true for audiovisual
data objects, whose AIPs might contain large uncompressed or mathematically lossless filetypes. Policy
check expressions with the conformance checker at this phase would ensure that relationships to file
characteristics like sub-sampling, bit-depth and frame rate are maintained throughout DIP generation.

Like the OAIS reference model itself, the PREFORMA conformance checker project aims to serve as a
framework for standards-building activities through the creation of powerful reporting tools. By extension,
MediaArea’s Conch toolset enables the creation of a complex representation net in the OAIS Archive,
providing information needed to adequately preserve audiovisual data objects through time.

Conformance Checking at digitisation Time

Verification of digitisation Policy Archival digitisation workflows are generally highly defined and
consistent so that various analog source objects are associated with particularly digitisation require-
ments. Generally digitisation specifications are selected in order to reduce alterations to the significant
characteristics of the analog source material. Example of such digitisation scenarios may be:

o A PAL Betacam SX tape is digitized to a Matroska/FFV1 file at PAL specifications with YUV
4:2:2 8 bit video and 4 channels of 24 bit LPCM audio

o A NTSC U-Matic tape is digitized to a Matroska/FFV1 file at NTSC specifications with YUV 4:2:2
10 bit video and 2 channels of 24 bit LPCM audio

e A 1/4" audio reel is digitized to a 2 channel 96000 Hz, 24 bit audio LPCM file

e A CD-R is ripped to a 44100 Hz, 16 bit, 2 channel LPCM file

e A DAT tape is ripped to either a 32000, 44100, or 48000 Hz 16 bit file

15

Administration Producers or Deposit Agents

SIP
Receive submission _)| Quality Assurance (QA)

submission storage

temporary storage

SIP FAIL |

sImplementation check

Generated

awdit reports, + Palicy check
document

standards, etc. + Metadata Fixer

- Reporter

temparary storage

ohbject repository

Figure 7: The OAIS Ingest Functional Entity with Conch Integration

16

Such digitisation requirements may be expressed into a policy checker set through the shell or policy
checker to verify that the results of digitisation are consistent with the archive’s specifications. This
includes both sets of technical metadata and specification as well as anticipated embedded descriptive,
preservation, or administrative metadata.

Verification of Lossless digitisation Until recently audiovisual digitisation required a fairly inflexible
set of hardware requirements and extremely limited possibilities for an open source approach to video
digitisation. Due to the bandwidth and processing requirements for the digitisation of standard definition
video required the installation of PCI cards and often the use of hardware encoders that were designed to
encode video as fast as the video was being received to codecs like MPEG2 or JPEG2000. With modern
connectivity options such as USB 3 and Thunderbolt it is easier to add video digitisation capabilities
to modern computers and more archive are performing this internally. Additionally modern computer
processers can now transcode video losslessly in software from a video input without the need to rely
on proprietary hardware-based encoders. Open source solutions such as DVA Profession, bmdcapture,
and FFmpeg along with the open provision of video digitisation software development kits, such as the
Blackmagic SDK are facilitating new open development projects for archival video digitisation.

As vendors and memory institutions increasingly consider implementing digitisation workflows that encode
video directly to lossless codecs, it is crucial to assess this file soon after creation to detect any flaws
created from the digitisation process.

For those digitizing video through processes that incorporate libav or FFmpeg such as bmdcapture of
FFmpeg’s decklink integration, a separate framemd5 may be written alongside the encoded FFV1 data.
The resulting FFV1 data may then be verified against the framemd5 to verify that the correct bits were
written to disk.

An inspiration for the use of framemdb reports within a digitisation workflow is inspired by the verify
option with the flac utility available at http://flac.sourceforge.net/. The -V’ or —verify command is used
to decode the encoded stream in parallel to the encoding process to double-check the losslessness of the
transcoding. With this method any discrepancy between what data is read and transcoded versus what
data is written to disk could be identified in a subsequent verification process. The use of framemd5
data within a digitisation workflow enables verification in cases where an option similar to flac’s —verify
argument isn’t available.

Assessment of Vendor/Producer Deliverables For archives that clarify specifications for audiovi-
sual digitisation projects, the implementation checker facilitates a workflow for the archivist to express
those specifications and verify received material against them. In addition to testing for the presence and
order of required metadata tags, the implementation checker should also be able to verify any adherence
to particular patterns as expressed through regular expressions.

The implementation checker should be able to verify that files were transferred completely and that the
delivered material does not contain any partial files from an incomplete or aborted transfer.

The implementation and policy checker’s reporting on deliverables will enable the user to provide specific
feedback to the vendor or producer to create files with greater compliance or coherency.

Conformance Checking at Migration Time

Fixity Verification Migration of large amounts of data introduces risk for digital corruption and/or
sector loss. Ongoing data migration is essential for digital preservation but can require a time consuming
verification process. Both Matroska and FFV1 contain features for internal fixity so that a file copied
from point A to point B can be assessed at point B alone to verify the data integrity of the frames.
MediaArea recommends using Matroska’s CRC features for use in digital preservation to allow for fixity
verification to be more stable and achievable with the file alone without necessarily depending on external
databases or records of checksums.

Obsolescence Monitoring Migration is typically an ideal time to perform obsolescence monitoring
and preparing actions to limit complications in obsolescence status. Just as memory institutions must

17

maintain the technology that their physical collections are dependent upon, this is equally true for digital
collections. As this maintenance becomes more complex, costly, or unlikely archives will typically reformat
material (with as little compromise to the content and characteristics of the source as possible) to a
format that has more sustainable characteristics.

To counteract arising obsolescence challenges it is critical to have access to thorough sets of technical
metadata in order to associate certain codecs, formats, or technologies with sustainability risks or to
identify what one format should be superseded by another in a particular digital preservation. For instance
an institution that utilized FFV1 version 0 as a lossless preservation codec may wish to identify such
files to reformat them to FFV1 version 3 (now that it is non-experimental) in order to take advantage of
version 3’s additional advantages. In our research one archive found that some digitized material received
from a vendor was missing technical metadata about field dominance and had to identify exactly which
materials were affected to order to rectify the issue.

The team and roles

o Jérdme Martinez (Digital Media Specialist): technical design, implementation of the
bytestream /bitstream analyzer, extraction of metadata.

o Guillaume Roques (Back end / Front end developer): database management, automation, perfor-
mance optimization, shell.

o Name to be confirmed (Junior developer): GUI development, reporting.

o Dave Rice (Archivist): communication with memory institutions, definition of tests, documentation.

o Ashley Blewer (Archivist): technical writing and documentation, design and user experience
optimization

o Tessa Fallon (Archivist): technical writing and documentation, community outreach, standards
organization

o Erik Piil (Archivist): technical writing and documentation, OAIS compliance support

Community
Artefactual Systems and Archivematica

Artefactual Systems is a privately owned company incorporated in the Province of British Columbia
with expertise in open-source, open-standard technologies for archival collections and digital repositories.
Artefactual is best known for its two open-source software tools, the Archivematica digital preservation
system and the AtoM online access system.

MediaArea proposes to include within its project a component focused on implementing parts of the
MediaArea conformance checker within an independent and OAIS-focused repository system. As many
of Archivematica’s development philsophies (modularity, OAIS, open source, and focus on memeory
institutions) align well with the spirit of PREFORMA’s Challenge Brief and Archivematica was an early
adopter of Matroska/FFV1/LPCM within a preservation context, we have selected Artefactual as an ideal
collaborator to ensure that the results of our work are well-prepared for integration within existing open
source repository solutions. Archivematica can benefit from PREFORMA’s development of conformance
checkers to strengthen that step of the OAIS processs. Additionally the incorporation of the conformance
checker into Archivematica shall allow memory institutions with a new means to access the results of the
project.

We believe that incorporating Artefactual into our phase 2 proposal provides a meaningful deliverable,
the incorporation of a PREFORMA conformance checker into a key OAIS solution. This collaboration
also provides the team with a strategic and indenpendent test case implementation. Although Artefactual
will not take part directly in the development of the conformance checker, our project proposal includes
funding to sponsor Artefactual to test, provide feedback upon, and implementation selections of the
conformance checker. Additionally we anticipate that Artefactual’s existing work on the Format Policy
Registry may provide a positive influence on our work on the policy checker.

18

Project Advisors

MediaArea has approached several individual and institutional partners from varying types of organizations
to provide expertise, testing, and feedback to the project as it develops. The intent of this aspect of
our proposal is to facilitate an efficient and responsive mechanism for feedback with specialized areas of
expertise relavent to the project. This initiative also kickstarts the relationship between the project, open
source development communities, and PREFORMA’s target users. Such partners would receive a fixed
stipend amount from our proposed in exchange for participation in the projects mailing list, occasional
requested meetings, and commenting on the project.

o Artefactual Systems (consulting and development company): Provide testing and feedback of project
tools, implement select conformance checker tools into Archivematica

o Tan Hendersohn (User of FFV1/mkv/lpcm in a national archive): Provide testing and feedback of
project tools

o Luca Barbato (Libav maintainer): validation of FFV1 tests, FFV1 specific technical support, review
of standardization efforts

o Moritz Bunkus (Matroska main developer): validation of Matroska tests, Matroska specific technical
support, review of standardization efforts

e Michael Niedermayer (FFmpeg maintainer and FFV1 primary author): validation of FFV1 tests,
FFV1 specific technical support, review of standardization efforts

Through real-time feedback and specialized review these participants will provide crucial evaluation of
the project throughout the second phase.

Open Source Sponsorship

Through MediaArea’s project plan there are several areas where we believe the resulting implementation
and use of the project deliverables would benefit from the sponsoring of related improvements through
key existing open source projects. To this end, MediaArea is reserving a portion of its overall budget
towards sponsoring development in external projects. These funds would be used when it is more efficient
to time and project cost to sponsor a small development rather than have our own team create the patch.

One specific receipent of such sponsorship would be as bounties within the issue trackers of ffmpeg,
libav, vlc, and/or other related open source projects. For example, our plan anticipates supplying
recommendations to next version of the Matroska file format, but such additions to the specification are
not meaningful to the user community without their implementation in the key tools for reading, writing,
and adjusting matroska files. Thus if working through matroska-devel we successfully present a patch for
adding field dominance or color matrix expressions to increase Matroska’s ability to self-describe than
such funds will be available to the project implement the use of the features.

Example of usage in European Memory Institutions

The National Library of Wales (NLW) has used Medialnfo in their digital audiovisual preservation
workflow for several years.

Former Chief Technical Officer of the National Library of Wales said: “As a National Library incorporating
the National Screen and Sound Archive of Wales, we have to preserve digital audiovisual material in
perpetuity. Part of this work is characterising AV files and extracting technical metadata. We found no
better tool at this job than Medialnfo, and the support and response from MediaArea SARL has always
been excellent.”

Vicky Phillips, Digital Standard Manager, said: “The National Library of Wales has been using Medialnfo
as a technical metadata extractor tool since we started preserving Off air (television and radio) recordings
in 2009. From 2009 up until last year we were using an internally developed transformation stylesheet (xslt)
in order to map the output from Medialnfo to the Library of Congress audioMD and videoMD metadata
standard. This metadata was then stored alongside other administrative and descriptive metadata for
that object within a METS document within our Digital Repository. At the time this worked quite well

19

for us, although we had to fix any issues with the xslt when changes were made to Medialnfo output,
which caused our transformation to fail or produce errors. However, we did feel that this localised schema
mapping implementation wasn’t a very sustainable solution. So when we were looking at updating the
system which captures our Off-air recordings last year and were looking at reviewing workflows and
metadata etc. we decided that this would be a good opportunity to try and get the technical metadata
we required for preservation purposes to be output directly from Medialnfo. The Library of Congress
audioMD and videoMD were always seen as just a stop gap until other metadata schemas were developed.
We therefore started looking at both PBCore and EBUCore. EBUCore’s elements seemed a lot more
specific than PBCore and being an European standard which is utilised by a number of European projects
it was felt that this was the best option for us. Discussion between Medialnfo, EBUCore and myself then
commenced in order to produce EBUCore directly from Medialnfo. With the aim being of developing a
mapping which is developed and maintained by those who are involved with the software and metadata
standard (developers and users). This would then enable the audio visual community to be able to
save technical metadata to a globally recognised metadata standard without having to do any mapping
themselves. We also use Medialnfo as a validation tool too (similar to JHove). For example we use it to
check that the duration of the digital file isn’t empty. If it’s empty we know that there is an issue with
the file and somebody takes a look at it and sometimes the item is re-processed. We have been running
Medialnfo on MP2-TS files from 2009 and are planning on running it on DPX, ProRes and IMX files
very soon.”

MediaArea demonstrated his capability to understand the need of the memory institution, to “translate”

it in a technical implementation, and to discuss the project with a standardization institution.

Open Source Ecosystem
Cross Platform Support

MediaArea excels in open source development for cross-platform support and chooses development
frameworks and tools that enable cross-platform support to be maintained. Several applications developed
by MediaArea such as QCTools, Medialnfo, and DVAnalyzer are available under nearly all major operating
systems. To achieve this we will program in C++ and use the Qt application framework (only for the
GUI, pending licensing).

For an impression of MediaArea’s focus on cross platform usability please see our download pages:

o http://mediaarea.net/en/Medialnfo/Download
o http://bavc.org/qctools-downloads

Medialnfo is also officially provided by multiple open source distributions:

o Debian: https://packages.debian.org/wheezy/Medialnfo

o Ubuntu: http://packages.ubuntu.com/utopic/Medialnfo

o RedHat / Fedora: https://apps.fedoraproject.org/packages/Medialnfo

o OpenSuse: http://packman.links2linux.org/package/Medialnfo

o Arch Linux: https://www.archlinux.org/packages/?q=Medialnfo

o FreeBSD: http://www.freshports.org/multimedia/Medialnfo/

o Homebrew (open source software package management system for Mac): http://brewformulas.org/Medialnfo

Online Resources
MediaArea will utilize GitHub as a social and development center for Conch development and uses
GitHub’s issue tracker and wiki features alongside development.

For communication MediaArea will establish public mailing lists and an IRC channel for foster support
and involvement from memory institutions.

MediaArea will solicit, create, and accept test files and reference files that highlight various features of
the implementation checker and illustrate likely preservation issues that may occur within the selected
formats.

20

Community Interviews

In December 2014, MediaArea started conducting interviews with FFV1, Matroska, and LPCM stake-
holders in order to collect feedback and insights from the archives community. To date, interviews have
been conducted with:

o Hermann Lewetz, Peter Bubestinger; Osterreichische Mediathek
e JTan Henderson; UK National Archives

Christophe Kummer; NOA

e George Blood; George Blood, L.P.

Notes and partial transcripts (in English) from the interviews are available in the Medialnfo PREFORMA
GitHub repository. Public release of interviews is pending complete transcriptions and review of tran-
scriptions by all participants in order to ensure accuracy and compliance with Creative Commons CC-BY
4.0. The interviewees’ feedback will help inform MediaArea’s approach to development in all areas, and
especially reinforced our plans to standardize the FFV1 specification through an open source standards
organization

Advance Improvement of Standard Specification

FFV1 Specification Efforts to create an FFV1 specification began in April 2012, continuing through
the August 2013 release of FFV1 version 3. Currently the specification remains in development at
http://github.com/ffmpeg/FFV1. Ideally a specification should fully inform the development of a decoder
or parser without the need to reference existing implementations (such as the FFV1 implementations
within flmpeg and libav); however MediaArea’s initial research and prototyping efforts with FFV1 found
the current specification insufficient to create a decoder. As a result MediaArea utilized ffmpeg’s FFV1
implementation to fully interpret the specification. Several threads on the ffmpeg-devel and libav-devel
listserv reference discussions about the development of the FFV1 specification and consideration of efforts
to standardize the specification through a standards organization, such as IETF (Internet Engineering
Task Force) 1.

In consideration of FFV1’s utilization within preservation contexts, the standardization of the codec
through an open standards organization would better establish FFV1 as a trustworthy, stable, and
documented option. In MediaArea’s interviews with FFV1 adopters, interviewees noted that FFV1’s
current status proved problematic in gaining organizational buy-in for adoption of FFV1. Additionally,
standardization of FFV1 would increase awareness of and interest in FF'V1. This increased visibility is
vital to engaging an overly cautious archives community. At the moment FFV1 can be seen at a tipping
point in its use within preservation context. Its speed, accessibility, and digital preservation features
make it an increasingly attractive option for lossless video encoding that can be found in more and more
large scale projects; the standardization of FFV1 through an open standards organization would be of
broad interest to digital preservation communities and facilitate greater accessibility of lossless encoding
options that are both efficient and standardized.

MediaArea proposes working closely with the lead authors of the FFV1 specification in order to update the
current FFV1 specification to increase its self-reliance and clarity. Development of the FFV1 specification
early within the PREFORMA project will generate substantial feedback to the authors of the specification
which could then be offered through the specification’s github page via pull requests or the issue tracker.
MediaArea proposes at a later stage of development that the PREFORMA project serve as a catalyst to
organize, facilitate, and sponsor the IETF standardization process for FFV1.

Considering the two-year timeline of the PREFORMA project and usual pace of IETF standardization
projects, we propose at least submitting FFV1 as an Independent Submission to IETF that could
provide workable timeline, encourage a detailed review process, and assign a formal RFC number to the
specification.

Matroska Specification Both the Matroska specification and its underlying specification for EBML
are at mature and stable stage with thorough documentation and existing validators, but several efforts
of the PREFORMA project can serve as contributions to this specifications. The underlying EBML

21

http://www.ietf.org/

specification 2 has already been drafted into RFC format but is has not yet been submitted to IETF as an
Independent Submission or otherwise. MediaArea recommends that PREFORMA play a similar catalyst
role for further standardization with Matroska as well, helping enable the refinement of the current RFC
draft and coordinating an IETF process.

Matroska has a detailed metadata specification at http://www.matroska.org/technical /specs/tagging /index.html.
Each tag has an official name and description while provides rules and recommendations for use. Many of

these tags could be associated with validation rules, such as expressed by regular expression to assure that

the content of the tag conforms to expectations. For instance tags such as URL, EMAIL, or ISBN have
specific allowable patterns for what may be contained. As part of build a conformance tool for Matroska,
MediaArea will generate conformance tests for individual tags and these tests may be contributed back

to the Matroska specification in a list of regex values, an XML schematron file, or other acceptable
contribution method.

Other Suggested Improvements or Contributions to Standard Specifications

e Register an official mime type via IETF for Matroska.
o Register dedicated FFV1 codecid with Matroska (current use is via fourcc)*.

« Proposal of a tagging extension to Matroska based on the requirements of the digital preservation
community.

e Feedback for features and functions of FFV1 version 4, which is currently under development.

o Creation of metadata translators to convert common descriptive metadata formats within memory
institution. For instance convert EBUCore into the XML representation of the Matroska tagging
specification so that such metadata may be easily imported and exported between EBUCore and
Matroska.

o fourcc is AVI-style with some bitstreams not having a clear license due to coming from Microsoft

Sustainable Open Source Business Ecosystem

MediaArea has long been an open source native and has an open source business model based on sponsored
support (bug correction and feature requests), application support, and branched customization based on
an institution’s specific needs since 2007. Previously existing in a non-business capacity since 2002.

MediaArea’s long term goal is to merge previous open source standalone products designed specifically
for broadcasting and memory institutions into its flagship product, Medialnfo. These products include
the WAV implementation checker, professional metadata editor and fixer BWF MetaEdit; the AVI
implementation checker, professional metadata editor and fixer AVI MetaEdit; and the baseband analyzer
for quality assurance, QCTools. Each piece of aforementioned software, designed by MediaArea, has a
strong focus on individual areas of digital preservation based on the specific sponsor’s needs. Thanks to our
discussions with memory institutions, we strongly believe that an integrated environment for conformance
checking is sorely needed in the field. By sponsoring the Matroska/FFV1/LPCM + shell/Implementation
Checker/Policy Checker/Reporter/Metadata fixer parts of this project, PREFORMA plays a major role
in the creation of a fully integrated and open source implementation checker.

MediaArea plans to build this stable, integrated solution over the course of the PREFORMA project
phase, which will include the current team investigations of Matroska, FFV1, and LPCM, as well as other
PREFORMA investigations such as TIFF and JPEG-2000. This will ensure that proper feedback from
PREFORMA developers and stakeholders is provided in a meaningful timeframe. After the PREFORMA
project is completed, MediaArea anticipates offering access to an integrated solution in two ways: as a
ready-to-use environment with a subscription business model (SaaS), and as a ready-to-download version
of the integrated solution. This is based on MediaArea’s future business model, which consists of a
combination of subscriptions and paid punctual support, such as bug corrections and new feature requests.
With this long term business model approach in mind, MediaArea will be able to continue offering a
PREFORMA-specific version, free of non-PREFORMA related layers, as a subset of our own integrated
solution.

22

http://matroska.org/technical/specs/rfc/index.html

Participation at Open Source conferences

The MediaArea team is active in the open source community and has presented the work on PREFORMA
at two conferences during Phase 1:

o Dave Rice presented our work on PREFORMA at FOSDEM on January 31st:
https://fosdem.org/2015/schedule/event /enabling video_ preservation/
Ashley Blewer presented our work at Code4Lib on February 11th:
http://wiki.code4lib.org/2015_ Lightning Talks

Within Phase 2, MediaArea intends to increase conference and community participation, particulary
with FOSDEM and IETF conferences. Additionally MediaArea will coordinate at least two open
workshops outside of PREFORMA'’s schedule to demonstrate the results of the project and gather
feedback. Tentatively these workshops occur within the Re-Design phase and are hosted by institutions
within London and Vienna.

Project Management Strategy
Goal

To ensure a vital project, the MediaArea.net team will track processes through an open issue tracker,
allowing for consistent and detailed reports with an emphasis on feedback and transparent communication
throughout various iterations of the project.

Method

It is through daily task distribution, management and reflection that project advancements, as well as
risks, are addressed. Such open, community-based interaction in the management and implementation
of the project allows evolution to occur in all components of the endeavor to include: management,
administration and documentation with the allowance for other opportunities for discussion and change
to emerge throughout the whole of the project. In the process, the MediaArea team will provide detailed
project reports that encourage open, constructive feedback during the testing process that will shape and
influence discussions during project meetings.

Justification/Purpose

Such assessments, occurring daily, aim to build a sense of community that can freely and continually
address all deviations and uncertainties, highlighting changes and assessing the benefits, as well as problems
with each shift in the projects testing and implementation. With daily communication, evaluations,
critiques and suggestions can be addressed with quickly and efficiently.

Intended Result

This approach to risk management is well-established within The MediaArea team’s previous work, with
openness between all involved being strongly encouraged. The MediaArea hopes for and invites all relevant
communities involvement in the strategy and management of the project, developing and including use
of public tools (github.com, wikis, forums, etc.) and other communication during the planning and
implementation of the project timeline. Such interactions and testing of software are welcome at any point
during the implementation stage. These engagements will help immensely in addressing and evaluation
of priorities and outcomes of the project. Through a process of constant assessment and open access
the MediaArea team can respond to changes in software and address performance and usability of the
software in its various forms.

23

Risk Analysis Model

e Define Risk

o Establish date of risk

o Define risk (factors, causes and possible effects)

e Include other contextual information related to risk

e Record individual who discovered risk

o Establish risks probability and impact

e Hypothesize time when risk could occur

o Hypothesize the impact of risk

o Prioritize risk based on established effects of risk

e Classify risk

o Establish point-person for addressing risk

e Create method to reduce likelihood of risk or avoid risk entirely
o Establish alternative plan should risk be unavoidable

e Mark last emergence of possible risk

e Declare risk concluded (Responsibility of Project Manager)
e Note date of the ending of risk

o Contextualize in writing

e Share with pertinent parties

— status and date when the status was last recorded,
— person who accepted the risk, e.g. project manager,
— conclusion date and

— reason for conclusion.

Internal Risk Assessment

Internal Management To assure the flow of the project, the team will establish a team leader, as
well as a junior leader, for the major components of the project. In the case of any event in which the
team leader is unable to retain their duties, the junior leader will take their place. Though established as
a junior leader, the leaders will function as joint team leaders through the entirety of the project, barring
the stepping down of either team leader for unforeseen reasons.

In the event of a major change to staff (whether through avoidance of risk to project vitality, or external
life events), the remaining team members will communicate about the best method for reallocation of
resources to either replace lost staff, or consider changes in distribution of work among the remaining
members. All changes will occur openly, with the participation upon relevant groups and stakeholders.
In the event of a drastic shift in leadership, the newly appointed person will affirm the roles of leadership
newly assigned to them and work to adhere to the standards of the original contract. If changes to the
contract are required, alterations will also occur openly, with the participation of relevant groups and
stakeholders.

Addressing Unrealistic Schedule In the event that the project appears as though it will move
beyond the original scope of time, the team will communicate and establish the reasons for the delay. If
these reasons can be addressed and changed to fall within the original schedule necessary changes will be
made. Such changes and discussions will remain open to relevant stakeholders. If the team communicates
and changes cannot be made to address the deadline, then a decision will occur within the team as to the
plausibility of establishing a new schedule. This discussion will remain open and include all pertinent
parties. If it is found that a new schedule can be implemented such changes will be made, at which point
all contracts, funding schedules and likewise paperwork will be altered.

In turn, should the team complete work before the established date a meeting will occur to discuss
what additional work might remain, or how the deliverable products might be further improved. If such
improvements are established, the team will continue work within the schedule time. Such decisions will
include input from all communities involved. Alternatively, should the team find that their work is at
the point of ideal completion, they will meet to discuss how best to end before the scheduled date. This

24

discussion will include all relevant stakeholders, with changes to contracts, financing and other factors
included as necessary.

Addressing Unrealistic Budget Based from the experience of MediaArea’s recent software devel-
opments projects of similar scale to PREFORMA we are confident that our budget, objectives, and
allocation of resources are appropriate and realistic.

In the event that the project appears as though it will exceed the proposed budget, the team will
communicate and establish the reason for the change in financial expectations. If these issues can be
addressed and changed to stay within the original budgeted amount, such changes will be implemented.
The decisions involving these changes will be shared with pertinent parties. If the team meets and decides
that the work will exceed the budget, an establishment of the dollar amount by which the project will
exceed its original amount will occur. This amount will be shared with all vital stakeholders.

After the team establishes the amount with which the project will run over budget, the possibility for
addressing this funding change will occur, such considerations will include all relevant communities. If the
new budget is attainable, work will be redistributed with all contracts, payments and financial elements
in need of alteration occurring.

Should the team be unable to attain the necessary funding to continue the project. The deliverables on
the project at the point of the cessation will be handed over to pertinent projects. Considerations about
continuing the project will be returned to if financing opportunities emerge.

In turn, should the team complete the project under the established budget, a discussion will occur as to
how the remaining monetary commitments might be used to improve or expand upon the projects goals.
Such discussions will be transparent and include all parties involved. If new budgeting occurs, changes to
all necessary contractings and financial paperwork will occur accordingly.

Ceasing of File Format Should any file format become incompatible the team has the ability to
analyze and address any existing format and the changes that occur with the respective format. The
project software is designed based on past project experiences, to allow for movement between different
formats. The team has already dedicated research and development efforts towards standardizing formats
to specifically assist in the archival sustainability of the MKV and FFV1 formats.

Additionally, the software framework can easily be applied to analyze any file format with minimal
change. The software is developed so that it is not difficult to swap in other formats and policies, and the
MediaArea team has experience doing such with MXF or MOV file formats, should the Matroska format
no longer continue development.

Software Incompatibility Should the software become incompatible due to major operating system
updates, API conflicts, or other unforeseeable technical issues, the team has the ability to analyze and
address any existing software and the changes that will occur with the respective software. The project
software is designed based on past project experiences, to allow for movement between different software
structures. For example, if a major operating system such as Windows changes intrinsically and does not
allow for the software to run at its basic level, crucial updates will be patched as needed. The modularity
of the project software allows for key components to work independent of each other, making it even
more unlikely that a system-wide failure should occur based on software compatibility. The software
is expressly written in C+4 due to its longstanding compatibility standards and optimal portability
between systems. Notable changes to software compatibility will be shared with pertinent stakeholders.

Open Source Compliance Should the supporting software chosen as foundational software for the
creation of this project become unavailable due to open source licensing complications, an alternative
open source solution will either be chosen to work in its place, or an in-house solution will be developed,
depending on if an alternative solution exists or if budget constraints allow for the creation of in-house
software components. Timing and budget priorities can be assessed, reviewed, and implemented according
to need. All changes will be discussed and considered with the input of relevant communities.

25

Timeline

This timeline presents a summary of MediaArea’s focus and objectives over the 22 months of our proposal
for Phase 2 of the PREFORMA project. Although MediaArea anticipates operating in an agile framework
that is responsive to the current pulse of the project and open to pragmatic modifications, this timeline
presents a current understanding of the work to be performed by our team.

The timeline for facilitating standardization work through the IETF is presented as a broad overview.
The timeline for standardization efforts is based on interviews with IETF members and participants in
the Opus audio standardization process and represents our timeline goal; however there are many factors
that may influence or change that timeline as it progresses.

o Monthly / Ongoing

— Informational postings to the Open Source Portal — Release notes and coordination of monthly software
release — Participation in meetings with PREFORMA, other suppliers, and community — Self-evaluation
of adherance to project timeline, goals, and budgets — Reporting on project progress — Managing issue
tracker and communication channels — Promoting the PREFORMA project via social media — Outreach
for the PREFORMA project via open source conference presentations

e March 2015 - October 2015 is known as the “First Prototype” section of Phase 2
e March - May 2015

— Extend FFV1 and MKV parsing within Medialnfo — Support Export format in Medialnfo adhering to
commonly defined PREFORMAXML expression — Set up communication channels, mailing-list, project
website, IRC channel, meetings with suppliers and PREFORMA — Set up milestones and tasks in GitHub
— Set up project README in GitHub — Draft introductory posts to Open Source Portal — Automate
nightly builds of Medialnfo (initially) and later Conch utilities — Finalize recuitment of Document Shepard
for IETF standardization process — Identify and resolve gaps or inconsistencies within the current state
of FFV1 and Matroska specifications — Collaborate with FFmpeg and Matroska specification authors to
prepare and submit an initial version of an Informational Internet Draft — Release initial policy checker
(CLI), based on Format Policy Registry (FPR) and Medialnfo existing metadata libraries.

e June 2015

— Release initial implementation checker — Finalize XSD for policy set expression — Release first GUI
version of Conch — Release first web client version of Conch — Request a “Birds of a Feather” meeting
with the IETF for the IETF 93 conference — Release and document sample library of MKV, FFV1, and
LPCM files

o July 2015

— Attend IETF 93, manage a “Birds of a Feather” meeting representing the Informational Submissions for
FFV1 and Matroska — Coordinate and gather community feedback on the current state of version 4 of
FFV1 and Matroska — Draft mockups of metadata fixer GUI, update GUI design for shell and components

e August - Sept 2015

— Online public demonstration of project deliverables — Document and release version 2 of sample library
— Prepare and submit a second version of an Informational Internet-Draft for FFV1 and Matroska —
Provide feedback to FFmpeg and Matroska on version 4 development — Publish documentation on various
workflows and use cases — Release documentation focused on independent usage and usage in integration —
Finalize design and documentation of reporter output formats

e November 2015 - Feburary 2016 is known as the “Re-Design” section of Phase 2

26

¢ November - December 2015

— Prepare and submit final or third Internet-Draft for FFV1 and Matroska and finalize working group plans
— Document and release version 2 of sample library — Participation in a training event for Open Source
companies that will take place in Stockholm in December 2015, in connection with the first Prototype
Demonstration. — Online public demonstration of project deliverables

e Jan - Feburary 2016

— Submit either 1) working group proposal or 2) proposal for working group consensus sponsorship; prepare
documentation for transition from Internet-Draft to Standards track — Release report on the outcome of
the Re-Design work, including updated timeline for Second Prototype — Reach out to memory institutions
willing to provide feedback and local policy rules for implementation into Policy Checker

e March 2016 - December 2016 is known as the “Second Prototype” section of Phase 2

The specific timeline of the Second Prototype section is largely dependent on and responsive to the
outcome of the prior Re-Design section, community response, and feedback. The timeline for the Second
Prototype section will be reviewed and redesign with collaboration of PREFORMA but this timeline
presents a basis on what we presently anticipate.

— Review project based on feedback and community response and integrate changes — Develop strategy for
continual open source support and development — Finalize the development of integrating PREFORMA
into the long-term MediaArea business model — Plan for optimal integration with other suppliers — Present
proposed Standard for FFV1 and Matroska at IETF 95 — Continue preparation and/or submission for
IETF Standards track

e July - December 2016

— Present updated work at IETF 96 (July) — Final evaluation and decision regarding proposal status on
Standards track (ultimately depends on IETF timeline) (August - Sept) — Participation in Experience
Workshop and prototype demonstration in Berlin (December)

e January 2017 - December 2017

— “Testing” portion of Phase 2 (Jan - June) — Online demonstration of project results (June) — Participation
in the PREFORMA final conference in Stockholm (December)

INTRODUCTION TO FUNCTIONAL SPECIFICATION

This serves as a roadmap for the technical components of the project, split into two categories: Global
architecture and Checker architecture. The global architecture schema defines the context in which the
PREFORMAMedialnfo software is situated and gives a high-level understanding of the software. The
Checker Architecture details the structural components of the conformance checker and metadata-grabbing
module.

The conformance checker’s goals are based on the following core principles:

Applicability

The conformance checker will provide essential services to the functional entities described in the Consul-
tative Committee for Space Data Systems (CCSDS) and International Organization for Standardization

(ISO) reference model for an Open Archival Information System (OAIS), intended for the long term
preservation of digital information.

27

Portability

The checker has the capability to be packaged and run as an executable on a computer running any
common operating system. For this reason, the shell has plans to be integrated into three platforms:
Command line, graphical user interface, and a web-based (server-client) platform. Qt was chosen as the
core toolkit for the development of the graphical user interface because of its flexibility and ability to be
deployed across many different operating system platforms.

The developed software will also have the capability to function as a micro-service application alongside
other digital preservation systems such as Archivematica. With its micro-service approach, Archivematica
serves as a wrapper for related task-specific software and is an open source system that also works to
maintain standards based on providing access to digital collections. The conformance checker suits this
systems’ design as an integrated micro-service suite, allowing for it to run alongside other third-party
software tools that also serve to process digital objects and help to standardize a preservation focused
ingest-to-access workflow. Within this design, various micro-services, including the conformance checker,
can be built together into customized workflows and deployed across all operating systems and platforms.

As the shell will be developed to integrate into and perform within a web-based platform, the web user
interface (UI) will function across 3 major browsers. These platforms are to include Firefox, Google
Chrome, and Internet Explorer. The software’s Ul and capabilities will function similarly across all of
these relevant web-based environments.

Scalability

Similar to the way in which Medialnfo can be built and expanded upon in archival institutions to perform
media analysis at scale, the comformance checker can be integrated into scripts and systems that can
validate files en masse and deliver computer-readable and human-readable metadata via standard XML
reports.

The scalability of each built component of the conformance checker will allow the software to scale
horizontally throughout multiple computers and servers in order to potentially meet a heavy and increased
workload. The software can be deployed on more computers for added speed, dexterity and reliability,
distributing and partitioning tasks to a cluster of machines in order to improve performance and increase
the working capacity of the software. Built within this architecture, the conformance checker can be
expanded upon and integrated into various workflow environments with the added ability to increase its
number of file requests.

Distribution

The source code will reside on an open development platform (GitHub) in order to provide easy access
and distribution during all stages of development. It will also have the ability to extract nightly builds of
the code and deploy using continuous integration. The subsequent builds and software releases can then
be downloaded, built and run on any system.

Modularity

MediaArea plans to collaborate with the other PREFORMA teams to support optimal interoperability
with each other as well as with third-party developers of additional conformance checkers that will utilize
the implementation checker shells. The checker’s API allows for the checker to be integrated alongside
other components and the future development of plug-in features. The architecture’s modularity will
also allow the software’s features ongoing and improved maintenance as well as offering reliability as a
freestanding shell.

The open source project will be programmed and provided in C++ but will be functionally compatible
with other programming languages through the use of bindings. Other than C++, the team will support
bindings to C, Python, Java, C# and other languages upon open request and feedback. The bindings will
function as wrappers to allow the original code to be explicitly used and supported within other common
languages. Supporting this capability will allow the API to be fully integrated within the open source
community with the full potential of interoperability.

28

Deployment

The shell will be deployed on the PREFORMA website, as a stand alone shell, networked with other
PREFORMA shells currently in development and used within test environments. Due to the levels of
interoperability set up as an integral component of the conformance checker, it can be utilized within
legacy systems as well as future systems. The shell will also be released to run on all relevant deployment
platforms, implying that any user will be able to download and operate the most up-to-date version of
the conformance checker.

Interoperability

MediaArea’s API will allow for the full integration and interoperability between all software systems.
The API will be developed to operate between the targeted systems while offering the ability to run and
behave similarly across each, whether the user is operating within MS Windows, Mac OSX, or Linux
distributions.

To enable growth within an open source environment, it is essential for the API and all corresponding data
structures and software releases to be able to comply to and function within an interoperable architecture
across different deployment platforms and software systems. System-to-system interoperability can be
enhanced to meet user’s potential needs, and the conformance checker’s API will help implement an
effective exchange and integration of the required data and information. This integration will suit other
software and will work across whichever system the user is running the software. The conformance
checker’s shell will also operate within legacy and future systems.

Global Architecture

This includes the following:

Technical specifications

Open source conformance compliancy
Relationships between frameworks

Framework traversal patterns

This is broken down into the following categories:

e Common Elements

e Core

¢ Database

e Scheduler

e New file daemon

e implementation checker and metadata grabbing module
e Policy Checker

e Reporter

. Shell(s)

— CLI (Command line interface)
— GUI (Graphical user interface)
— Web (Web based interface)

Checker Architecture

This includes the following:

e Technical specifications
e Relationships between each structural component

29

e Relationships between plugins
This is broken down into the following categories:

e Transport interface

« Container /wrapper implementation

o Container /wrapper demuxer

o Stream/essence implementation

o Stream/essence decoder (through plugin)

o Stream/container coherency check

o Baseband analyzer (optional, through plugin)

Global Architecture

MediaArea’s Conch strives to offer access and ease to users with a structure that operates similarly and
efficiently cross-platform and functions in both an online and offline capacity within different interfaces.

Architecture schema

PreForma PreForma PreForma
Implementation Implementation Implementation
checker checker checker
AV Image Text

PreForma

Policy checker

PreForma
Scheduler

PreForma
Files listener

PreForma

PreForma Core

Database

PreForma

Reporter

PreForma Ul PreForma Ul PreForma Ul DIRECT

Web Desktop app CLI

Figure 8: Global Architecture Schema

30

Common to all elements

The components may be installed on the same server or on different servers. This will be dependent on
the expected workload and anticipated points of access. The flexibility of the architecture allows for a
single user to either use the shell on one computer or to use it on multiple computers, depending on
scalability and need. A distributed system can be set up to allow the implementation checker to process
large files more quickly than when working on a single machine. This architecture offers this ability with
relative ease for the user. In addition to added speed, this build of scalability within the implementation
checker increases its capacity to function reliably within various anticipated workflows.

File access

File access using CLI To place a file into the checking system, a user may execute the CLI name file
manually or they can asynchronously run the file and test it for readiness. If the files are passed in a
batch format, the reports can be later retrieved by manually requesting updates from the Core.

File access using GUI To place and use a file through the checker’s GUI, both technical and non-
technical users will work within windows and dialog boxes that enable them to navigate to, open, and
load system files directly within the interface. A standard open dialog box will search for and load files
for processing within the software. The GUI runs within a human-readable, interactive environment with
visually intuitive access to the file checking process. In addition to allowing direct access to checking
individual files, scheduled batch file checking via special folders residing on the user’s computer/network
can also be enabled directly within the GUL.

File access using Web To place and check files through the web-based browser platform, the process
will be similar to working within the implementation checker’s GUI. In this case, file loading will function
visually, as with the GUI platform, but within the specific web browser’s user interface (UI) and without
the user having to directly download the software. Local network access will power the checker within
the browser (Firefox, Chrome, or IE). Similar to the CLI and GUI, the web-based (server-client) platform
allows for individual file loading and checking (via a visually intuitive designed interface) as well as
enabling the capability of calling up batch-scheduled checks directly via the UL

Common to all Files can be copied to a special folder somewhere on the user’s computer or local
network. This folder can then be set to regularly check for new files at defined intervals and process the
files accordingly. This function can be set up within any of the three checker access methods (CLI, GUI,
and Web UI).

File processing

The architecture allows for two modes of file processing: direct access and asynchronous. Through
enabling both processes, users can choose to have the checker handle individual files or have it process
them in batches. Direct access allows for files to be processed one at a time, while asynchronous allows
for files to be processed in batches and returned to at a later time.

Internet Access

The architecture does not require direct internet access. Users can work with any version (CLI, GUI, and
Web Ul) offline as long as it is installed on a user’s machine (or distributed machines). In this case, for
each deployment platform the version is installed and being used on, the user will be able to create an
executable even when they are not connected to the internet. The web browser UI can be run using a
local network access.

31

Automation

Our design includes the option of automated checking, allowing for users to receive notifications when
new files enter the system or meet certain policy or implementation outcomes.

A user can set up a system on the Core which will configure the system to run scheduled automatic
checks for new files and batches. This system can be accessed and configured within the user interface to
run on a timed and defined schedule.

Batching

A user also has the option to set up batch file checking and validating and schedule it to be sent through
to the checker at any later point in time. These large tasks can be set up to perform according to a
defined schedule. All versions of checker access (CLI, GUI, and Web UI) will have the capacity to enable
this function, either through the command line or directly through the interface.

Prioritization

A user can also prioritize the checker to queue individual items and scheduled checks based on a defined
priority level, with a lower priority placed on periodic checks. This function will be available through all
versions of the checker (CLI, GUI, and Web UI). Priority levels for checks can be divided by High (for
checks requested by user), Normal (for automated checks), Low (for periodic checks) requests.

RESTful API

Much of the Architecture’s components communicate with each other via a REST-based (representational
state transfer) API. Transactions can be broken down into smaller modules to allow for optimal flexiblity
and use. REST is based on four basic acts of transfer: “PUT?” is used to change the state of or update a
resource (which can be a file or a block of data); “GET” is used to retrieve a resource; “POST” is used to
create that resource; and “DELETE?” is used to remove the resource.

Offline Access

PREFORMA allows users to load and edit configurations within a REST API configuration that will run
via HTTP. Internet connectivity is not required to use any core component of the shell.

The Web-based system allows users to work both on and outside of the network as well as locally if they
choose. If the user chooses to work locally, they will have access to the application server directly. This
operation runs via a HT'TP Daemon.

Core (Controller)

The Core serves as communication between all plugins within and outside of the Conch system and
between all layers. The Core is the main service and runs in a passive, background mode. For example,
if a user updates the Core, it will have no effect on the functionality of other systems. If a user begins
using MySQL while running the implementation checker and decided to change to PostgreSQL, the Core
could be adapted to address such a change. In essence, while components shift, the Core functions to
present the data to all databases consistently and similarly and can adapt to different components.

The Core has several major functions:

e controls the checkers and manages data for the User Interface
o waits for commands from the Files listener and User Interface
e sends commands to the scheduler for file-checking

e launch periodic checks

32

« communicates with the database to store and retrieve data from the checkers
« sends data to DIRECT

The Core supports the following requirements:

e Scheduling

e Statistics

e Reporting

o User management

e Policies management

Interface:

e Scheduler : Advanced Message Queuing Protocol
 Policy checker / Files listener / User Interface / DIRECT : REST API
o Database : native driver

Programming language : C++

Database

The Database is responsible for storing the associated metadata and results of the implementation checker,
including the policy checker rules and the user rights management. All specific technical metadata and
conformance checking results for each type of file format are sent back to the Core before being stored
within the database.

o store metadata and results of the implementation checker
e store the policy checker rules

e user rights management

o trace (optionally)

Interface:
e Core : native driver

Software:

As the main purpose of the software build is to store flat datas, it’s more suitable to use a document
oriented database (NoSQL). However, a more traditional relational database can also be used.

There are various potential database management system options, contingent upon the open source
licensing requirements:

o Relational database : MySQL (GPLv2) / PostgreSQL (PostgreSQL License) / SQLite (public
domain)
» Non relational database : MongoDB (AGPLv3) / Elasticsearch (Apache license 2)

Scheduler

The Scheduler element is a form of software “middleware” that distributes the files to be checked across
the implementation checkers by using a message broker interface. It translates the file data into one
unified language for access within all aspects of the software. The Scheduler also controls priority levels
for file checking.

33

« distributes files

translates file data into unified language
e batch processing

e priority

The Scheduler can take care of the priority function within the implementation checkers:

e high: for checks requested by user
e normal: for automated checks
e low: for periodic checks

Interface:

e Core : Advanced Message Queuing Protocol
o Checkers : Advanced Message Queuing Protocol

Software:

RabbitMQ (MPL 1.1) / Gearman (BSD) / ZeroMQ (LGPL v3)

Files listener

The Files listener is a background process that listens for new files available for checking and validating.
Automated checking, set up through the software, will send a notification when new files come into the
system. Each time a new file is available, or if a file is modified, an event is sent to the Core which
automatically requests a check.

Different solutions can be implemented depending on the file’s storage and operating system. Implemented
solutions can include an inotify notification system API for a Linux kernel or kqueue/kevent for a BSD
kernel or files directory scanning.

e Automated checks
Programming language : C++

Implementation checker and Metadata Grabbing Module

This module can utilize one or more checkers for each media type. As the implementation checker’s
process could potentially run for a long time, we use an asynchronous system based on a messaging
system in order to not lock up the whole process. Metadata and conformance checking results for each
file are sent back to the Core to be stored within the database.

e runs the conformance tests for the different types of media files
 grabs metadata (used for policy checking)

See Checker Architecture for more details.

Interface:
e Scheduler : Advanced Message Queuing Protocol

Programming language : C++ for MediaArea, depends on other participants for JPEG 2000, TIFF, PDF.

34

CheckerArchitecture.md

Policy checker

The policy checker serves to run tests on all metadata grabbed by the implementation checker and
metadata grabbing module (the Checker). A vocabulary of technical metadata for each file format and
media type will be created for the policy checker’s functions.

e runs the policy tests for the different type of media files.
Interface:

e Core: REST API

Programming language : C++

Reporter

Within each of the developed user interfaces there will be ways to export raw metadata and human-
readable JSON/XML/HTML/PDF reports after the conformance checking process. The reporter will
define and express how a file’s checked metadata corresponds to the validation result standards.

e exports a machine-readable report, including preservation metadata for each file checked

e exports a report that allows external software agents to further process the file

e exports a human-readable report

e exports a foolproof report which also indicates what should be done to fix the non-conformances

The machine-readable report will be produced using a standard XML format, implemented by all
implementation checkers working within the PREFORMA ecosystem. This allows the reported module
to combine output from multiple checker components into one report while also including sub-elements
within the report that will address each conformity check. The report will be based on a standard output
format that will be made by the consortium.

The human-readable report summarizes the preservation status of a batch of files as a whole, reporting
to a non-expert audience whether a file is compliant with the standard specifications of the format or
institution while also addressing improvements in the creation/digitisation workflow process.

Interface:
e Core: REST API

Programming language : C++
Will use PoDoFo (LGPLv3+) for PDF export

User interface

The User interface (UI) is the shell component that allows direct interaction between users (or other
systems) and the PREFORMA components:

o displays test results

e controls the Core

o allows metadata (descriptive and structural) to be edited

o edit configuration (periodic checks, policy checker, user rights)

Conch will provide three different options for a human interface in order to introduce maximum user
interaction and flexibility within the implementation checker. These three interfaces are:

35

o CLI (Command line interface)

A command line interface will be functional on nearly all types of operating systems and platforms,
including those with very little graphical interface support. CLI use allows for integration into a batch-
mode processing workflow for analyzing files at scale. This interface is more intended for technical and
expert users and for non-human interaction.

o GUI (Graphical user interface)

A Graphical user interface (GUI) will be developed and provided for both expert and non-expert users.
The GUI, being based on Qt, has the strength of being versatile between operating systems and does not
require additional development time to provide support for multiple platforms. The GUI can function
similarly across all deployment platforms.

o Web UI (server/client)

An optional web-based user interface (UI) will also be provided for both expert and non-expert users.
In order to run this option, an internet access will not be needed or required. Local network access
will power the checker within the user’s chosen web-browser. The web interface will provide access to
conformance checks without having to directly download and install the software.

Users will have access to this web-based user interface for basic management. This will allow users to see
the list of files, as well as the processes and checking happening to each of these files. Users will also
be shown demarcation of which files pass testing successfully. The web user interface (UI) will function
across 3 major web-based browsers (Firefox, Google Chrome, and Internet Explorer).

Interface:
e Core : REST API
Programming languages:

e CLI: CH++
o GUI: C++ / Qt (LGPLv3+)
e Web : PHP/Symfony (MIT)

Checker Architectural Layers

The design of the implementation checker portion of the Conch application will be comprised of several
layers which will communicate via a Core controller. The layers shall include:

e Transport interface

o Container /wrapper implementation

o Container /wrapper demuxer

o Stream/essence implementation

o Stream/essence decoder (optional, through plugin)
o Stream/container coherency check

o Baseband analyzer (optional, through plugin)

Transport layer
Conch: File on disk or direct memory mapping
Conch uses the native file API for each operating system to enable direct file access, including files that

are still in the process or being written. The inclusion of Medialnfo also offers features for direct memory
mapping which will be useful for third-party development or plugins.

36

C h ec ker . Preforma Medialnfo native
Architecture) rrgnasaynesaien LAY @IS

Transport interface

Container/Wra pper demuxer

Stream/Essence implementatiun

Stream/Essence decoder

Stream/Container coherency check

Baseband analyzer

Figure 9: Checker Architecture Layers

37

Plugin integration proof of concept: libcURL

libcURL is licensed under an MIT license that is compatible with both GPLv3+ and MPLv2+. We can
relicense to be under GPLv3+ and MPLv2+. libcURL offers extensive support for transferring data
through many protocols. By incorporating curl into Conch the tool will be able to assess files that may
be accessible online by providing a URL (or list of URLs) in place of a filepath.

Since we will be generating a library of reference and sample files that will include large audiovisual files,
users will be able to assess reference files without necessarily needing to download them.

Used as a proof of concept of plugin integration: HTTP/HTTPS/FTP/FTPS support via Medialnfo
open source GPLv3+/MPL2+ and libcurl (MIT license, can be re-licensed to GPLv3+4/MPL2+)

Container /Wrapper implementation checker
Conch

o Matroska checker

Plugin integration proof of concept: mkvalidator

mkvalidator is a basic and no more maintained Matroska checker (BSD license, compatible with
GPLv3+/MPL2+) which will be used mostly for demonstration of the plugin integration.

Optional

(Not part of the original PREFORMA tender but can potentially be added upon request after in context
of professional services)

« MOV / ISO MP4

o AVI

« WAV

e MXF

o Any other container format on sponsor request (we have skills in OGG, MPEG-TS, MPEG-PS, DV,
IMF...)

Container /Wrapper Demultiplexing
Conch

Conch will utilize Medialnfo’s updated (for the project) demuxing libraries (re-licensed under
GPLv3+/MPLv2+) which will allow for PREFORMA’s selected video codecs, FFV1 and JPEG2000, to
be assessed from within many formats found within archives although these container formats themselves
aren’t the focus of the current PREFORMA project. Through discovery interviews with archives and
vendors we have found FFV1’s archival implementations to use a variety of container formats such as
AVT and QuickTime as well as Matroska. In order to allow developed tools to support FFV1 even if
not contained within Matroska, Conch will support the following formats for demuxing (though not
necessarily for conformity (yet)):

e MXF (commonly found within memory institutions)

o« MOV /MP4 (often found containing FFV1, JPEG2000, and LPCM)
o DV (video stream format which uses LPCM)

o AVI (used with FFV1 by DV Profession, NOA, Austria Mediathek)
o WAV (a common container for LPCM)

o WAVEG64 (64-bit extensions of WAV for 2GB+ files)

38

o RF64 (64-bit extensions of WAV for 2GB+ files)

By supporting the demultiplexing of these formats through Medialnfo, the developed tools will be
applicable to a wide variety of files that contain PREFORMA'’s selected codecs: FFV1, JPEG2000, and
LPCM. This demultiplexing support can be available through Medialnfo’s existing libraries in a manner
that is compatible with PREFORMA’s licensing requirements.

Stream /Essence implementation checker

Plugin

Conch

« FFV1
e PCM (including D-10 Audio, AES3)

Plugin integration proof of concept: jpylyzer

For JPEG 2000 (GPLv3+ license, compatible with GPLv3+ but not with MPL2+)

Optional

(Not part of the original PREFORMA tender but can potentially be added upon request after in context
of professional services)

o MPEG-1/2 Video (including IMX, AS-07, D-10 Video)

o H.264/AVC (including AS-07)

e Dirac

o AC-3 (including AS-07)

o« MPEG 1/2 Audio

« AAC

o Any other essence format on sponsor request (we have skills in DV, VC-1, VC-3, MPEG-4 Visual,
H.263, H.265/HEVC, FLAC, Musepack, Wavepack, BMP, DPX, EXR, JPEG, PNG, SubRip,
WebVTT, N19/STL, TTML...)

Stream /Essence decoder

(Not part of the original PREFORMA tender but can potentially be added upon request after in context
of professional services)

Conch

o PCM (including D-10 Audio, AES3)

Plugin integration proof of concept: OpenJPEG

OpenJPEG decoder (BSD license, compatible with GPLv3+/MPL2+)

39

Container /Wrapper vs Stream/Essence Coherency Check
Conch

Conch will support the coherency check between all suppoted formats (see Container/Wrapper implemen-
tation checker and Stream/Essence implementation checker parts)

Baseband Analyzer

(Not part of the original PREFORMA tender but can potentially be added upon request after in context
of professional services)

Conch

o None (only creation of the APT)

Implementation Checker Functional Requirements
Introduction

The implemententation checker is the centerpiece of the project and where development efforts shall be
the most consequential to memory institutions and the underlying standards organizations. MediaArea
plans to use the utmost precision and transparency within the development of the implementation checker
so that it may, to the greatest extent feasible, produce an accurate and referenced analysis regarding the
adherence or transgression of a selected file format to its associated specifications.

Measuring the extent of the adherence of files to associated specifications can be adjusted by the user, for
instance the user may wish to only verify files against a particular version of a specification, or choose to
exempt or excuse certain violations, or choose to only assess part of a file (for instance to only test the
frame X frames of FFV1 for adherance) in the interest of time.

The design of the implementation checker will enable the user to have some control over the compre-
hensiveness or extent of the checking process. Additionally the expression of violations should provide
both new and advanced users with enough context to the understand the outcome. For instance as the
implementation checker reports conformance errors (such as a FFV1 frame expressing an invalid aspect
ratio, an MKV file omitting required metadata for an attachment, or that the data size of an LPCM
stream contradicts the metadata of the encapsulating format) the output should associate that error with
contextual information to reference to violated section of the specification, document potential response,
and advise the user to the consequence and meaning of the error.

Ultimately the implementation checker (supported by the other components of the conformance checker)
should enable memory institutions to fully understand, validate, and control the file formats selected by
the project.

Registry of Checks

The implementation checker must be associated with an active and open registry of checks. The registry
shall describe each conformance test in easy to understand, approachable language, with citations to the
associated specification, and details of any logic, deductive reasoning, or inferrence clearly detailed. The
registry should associate each test to the source code that enacts the so that the human-defined and
computer-defined implementations of each check may be strongly linked.

The Registry must allow support community involvement, such as associated forums, issue trackers, links
to asscoiated sample files, etc. The design of the Registry and its intertwinement with the Implementation
Checker will provide users with a means to navigate from their discovery to sample files, source code,
community knowledge, and context.

40

The registered checks shall be categorized according to their respective associated authority and specifica-
tion document. The grouping of rules shall enable the user to select parts of an implementation check if
necessary. For instance the Matroska specificiation is comprised of several versions and several underlying
specifications, such as Extensible Binary Meta Language (EBML). The implementation checker should be
able to test if a file is valid according to all known checks asscoiated with Matroska, but should also be
able to validate a file against only the rules derived from the EBML specification.

Demultiplexing

MediaArea’s project focus includes two formats of encoded audiovisual data (FFV1 and LPCM) that
are usually found within other container formats (which may or may not be Matroska). We intend the
implementation checker to function properly for FFV1 and LPCM even if they are not contained within
Matroska. Medialnfo already contains the ability to parse encoded streams from container formats such
as AVI, QuickTime, MXF, and many others. By re-licensing Medialnfo under PREFORMA’s licensing
requirements we can ensure that the implementation checker maintain relevance for file formats such as
FFV1 in AVI and FFV1 in QuickTime (both found widely in early discovery interviews and surveys).
In these cases the Implementation Checker will report on the implementation of the supported formats
specifically (here FFV1) and not focus on unsupported container formats which happen to be deployed.

Implementation Checker

The Implementation Checker, whether run via command line interface (CLI), graphical user interface
(GUI), or browser-based interface, should be able to accept a file as a input. The Implementation Checker
will verify that the input is relevant to the Checker (ie. is it EBML/Matroska or does it appear to
contain FFV1 or LPCM). If relevant, the Implementation Checker will verify adherence or document
transgressions to the test detailed in the Registry. The output will use the formats of the Reporter,
specifically the PREFORMA XML format, but additional outputs in JSON, PDF, and/or HTML will be
available.

Because some checks are fairly processor-intensive, MediaArea’s developers will focus on the efficency
of intensive checks (such as verifying the CRC payloads of FFV1 or MKV) through multi-threaded
processing, frequent benchmarking, and coding optimizations. Additionally the user shall be able to
express settings to balance time and thoroughness of the checks.

The GUI of the implementation checker shall provide a configuration interface where sets of registered
checks may be enabled or disabled. The interface shall link each check to documentation (internal or
online) regarding the context of the check. Another interface shall allow the user to select one or many
files to verify against the selected checkers. The test (associatation of files to checks) may then be run or
sent to a scheduler within the Shell.

The reporting of the Implementation Checker should associate checks to specific files and provide detailed
context: byte offsets, links to background infromation, citations, and other supportive documentation.

Policy Checker Functional Requirements
Policy Checker Graphical User Interface

The policy checker graphical user interface will allow set of policy rules to be created and configured
to specfic workflows and then applied to selected collections of files or file queries across a file system.
Although predefined presets are available, users shall be able to use the interface to create or edit policy
check presets for reuse. A policy check preset will include a list will essentially be a recipe for evaluating
the technical aspects of a set of files. Although MediaArea’s implementation here will focus specifically
on the selected formats of Matroska, FFV1, and LPCM, the policy checker will be able to preform checks
on any type of file supported by Medialnfo.

MediaArea currently manages a registry of terminology to express a diverse set of technical metadata
characteristics, including information about containers, streams, contents, and file attributes. Such
information is derived from container demuxing and specialized bitstream analysis. The approach of

41

Medialnfo’s design is to trace through the entire structure of a file and interpret all data in a manner
that categorizes it to the content of the utilized formats underlying specifications. This interpretation of
audiovisual data is comprehensive and specification based, but to supported more generalized use within
media workflows, the information is then aligned to a pre-defined set of technical metadata terminology.

MediaArea will extend its Matroska demultiplexer to focus on the complete potential expression allowed
by all versions of Matroska (versions 1 to 3, and experimental version 4) as well as common Matroska
format profiles such as WebM. Additionally Medialnfo will continue work on its FFV1 bitstream filter to
efficiently analyze single frames, partial streams, or whole streams. Such work will distinguish between
contextual and technical metadata unique to the four existing versions of FFV1.

Within the use of the policy checker the user shall be able to comprehensive and conditional policy checks
to apply to one or many files. The policy checker may be used to assess vendor deliverables, consistency
in digitisation efforts, obsolescence or quality monitoring, in order to better control and manage digital
preservation collections.

Design & Functional Requirements

Standardizing Policy Expressions To faciliate interoperability between PREFORMA’s developed
Policy Checkers and the Shells of all suppliers, MediaArea proposes that all suppliers collaborate to
define a common data expression for policy. The policy expression standard to cover a shared registry
of technical metadata that shares overlapping scope amongst all supplier policy checkers (for example:
policy expressions to test against file size or file name should express those technical concepts identically).
Additional policies expressions from all Suppliers should share a concept list of operators such as ‘must
equal’, ‘greater than’, ‘matches regex’, etc. A common policy expression shall also share methods to
define conditional policy checks, for instance to conditionally test if the frame size is 720x576 when the
frame rate is 25 fps and to test if the frame size is 720x486 when the frame rate is 30000/1001.

MediaArea recommends the policy expressions be standardizing with an XML Schema co-defined by
all Suppliers, managed with version control in a common GitHub account, and accessible through the
documentation of the Open Source Portal.

Policy Designer Interface The policy designer interface enables users to create, edit, and share sets
of policies. The functions of the policy designer interface shall include allowing the user to:

e create, edit, and remove policy sets

e name and describe policy sets

e import, export, and validate XML files of policy sets

¢ allow new policies to be added, edited, or removed from policy sets

e synchronize a vocabulary between the terminology registered in Medialnfo and the user interface
e use a list of policy test operators as defined in the policy expression XSD

« allow policies to be encapsulate within over conditional tests with an if/else approach

The policy designer interface will inform the user with a general indicator as to how time-consuming the
test will be. For instance, testing that all selected Matroska files are version 3 or higher may be done with
a quick header parse, but to test that all FF'V1 frames have valid embedded CRCs would take a lot more
time. Although policy sets may provide an indicator as to the amount of time required (i.e. which sets
are quick and which are intensive). This information may be used to set up task scheduling efficiently.

File Selection Interface The file selection interface shall allow the operator to load files through such
methods as drag-and-drop, selection through system dialogs, or file system queries. Such sets of files or
queries to identify files may then be saved, name, and described. Thus an operator may define a particular
directory as an entry point for acquisitions, a queue for quality control assessment, or archival storage.

42

I Policy Checker File Help Type Here

[.i“ H .i“ .l.. [nqn .i.. POIicv 1
| FRvl | gop_size % | MUST EQUAL (M = Policy 2
| FFvl + | slice_cre % | MUST BE ENABLED :] & Policy 3
: . . o . Policy 4
| FFvl :| version 4| GREATER THAN OREQUAL | | "3" +
| MKV : | tag : | BARCODE MUST STARTWITH +| | "ABC" +|
| MKV 2| tag : | DATE DIGITIZED IS BEFORE & | 2014-C |
v [Mrv : | tag + | ISBN MATCHES REGEX :) ["e=l-0 3] i

Save Policy
Add Policy
Apply Policy

Figure 10: Policy Designer Interface

Policy Checker File Help Type Here

- FFV1.gop_size MUST_EQUAL "1" Policy 1
- FFV1.slice_cre MUST_BE_ENABLED Policy 2
- FFV1.version GREATER_THAN_OR_EQUAL "3"
- MKV.tag.BARCODE MUST_START_WITH "ABC" :
- MKV.tag.DATE_DICITZED 1S_BEFORE *2014-01-01" Policy 4
- MKV.tag.ISBN MATCHES_REGEX "(?=[-0-9xX J{13}$)(2:[0-8]+[-]){3}[0-9]*[xX0-9]$"

Policy 3

Edit Policy
Add Policy
Apply Policy

Figure 11: Policy Selection Interface

43

Policy Test Interface Within the Policy Test Interface, the user may associate policy sets and file
selections to form a policy test. Policy tests may contain name and descriptions which will be passed
through to the resulting report to provide context. The policy tests may then be run directly or assigned
to the task scheduler of the Shell. Within the Policy Checker GUI the results of the policy tests may
then viewed or analysis within the Reporter GUI.

The policy test interface will provide access to a log of policy tests, the context of each test, and any
errors in running the policy test (such as the file selection being unavailable).

Policy Checker Command Line Interface
Functional Overview

In the context of the Command Line Interface the Policy Checker shall allow for the Policy Set XML
and the file or files to be tested to be inputs to the command line utility. The output of the utility will
be a report compliant with PREFORMA reporting format for the expression of conformance, policy
and metadata information. The command line will provide various levels of verbosity in order to show
progress in processing through multiple files and allow the policy results to be shown as they are assessed.

The Policy Checker will support exit codes to programmically inform to the output of the process.

Design and Functional Requirements

Users of the command line interface will be prompted with several usage options to call specific project
APIs, including the Reporter, implementation checker, Policy Checker, and Metadata Fixer. An additional
call for “—Help” will prompt an extended options menu. The functions of the command line interface
shall include allowing the user to:

e create, edit, and remove policy sets

e name and describe policy sets

e import, export, and validate XML files of policy sets

¢ allow new policies to be added, edited, or removed from policy sets

« allow policies to be encapsulated within over conditional tests with an if/else approach

Batch Policy Checking The command line interface allows for efficient batch policy checking through
calls made to the API.

Metadata Fixer Functional Requirements
Introduction to Graphical User Interface

Although many audiovisual formats contain comprehensive support for metadata, archivists are eventually
faced with a dilemma regarding its application. On one hand, a bit-by-bit preservation of the original data
comprising the object is a significant objective. On the other hand, archivists prioritize having archival
objects be as self-descriptive as possible. While the OAIS model aims to mitigate such a dilemma through
the creation of distinct Information Packages, this is not often the case. For an institution managing
digital files as objects for preservation, a change to the file’s metadata is a change to the object itself;
significant attributes such as file size and checksum are irreversibly altered. Because such revisions to the
object prevent fixity functions, the decision on whether or not to fix or add metadata within the OAIS
structure is oftentimes complex.

The intrinsic design of the Matroska file format aims to find a balance between these two considerations.
Rather than relying on an external checksumming process to validate the fixity of the file, Matroska
provides a mechanism for doing so internally. The CRC elements of Matroska may be used within any
Element to document the subsequent data of the parent element’s payload. With this feature a Matroska
file may be edited in one particular section while the other sections maintain their ability to be easily

44

validated. Thus in addition to (or possibly in lieu of) generating a file checksum during acquisition, a
archive may use PREFORMA’s Matroska tools to embed CRC elements if they do not already exist.
When a Matroska file is internally protected by CRCs, the sections of the file may be edited or fixed
while maintaining a function to verify the un-edited functions.

Because of these Matroska features, we are very interested in how archivists may work more actively
with internal file metadata through various parts of the OAIS framework. For instance reports on file
edits, repairs, and outcomes of preservation events may be added directly to the file. With such tools as
proposed by this project, archivists and repository systems may work with living Matroska preservation
objects which internally define the context and lifecycle of themselves over time while maintaining the
fixity features of the contained audiovisual data which is the essence of the overall preservation focus and
what the Matroska container may be used to describe, validate, and support.

Although the Metadata Fixer can provide comprehensive levels of control over metadata creation and
editing, the central objective of the metadata fixer is to facilitate repair procedures for conformance or
policy issues. The Tag validation status will be presented in detail or summarization dependent on the
active layout and related problematic aspects of the file with designed repair solutions. Because metadata
fixes or repairs will alter a preservation file, MediaArea has dedicated a signficiant level of caution to the
design of these operations. Learning from our similar experience with BWF MetaEdit, such designs will
be based off of a thorough programmatic understanding of the file, the actions to move the file towards a
greater level of conformity, and the risks associated with doing so. The interfaces designed here will serve
to intuitively relate file issues, with programatically proposed fixes, and inform to provide the user with
an understand of the context and risk of the fix.

Design & Functional Requirements

File List Layout The GUI version of the metadata fixer will provide an interface to see a table of
summarized metadata for one or many open files. The intent is to go allow files to be sorted by particular
technical qualities or the content of embedded metadata. A table-based presentation will also allow the
inconsistancies of technical metadata to be easily revealed and repaired.

MediaArea has developed such interfaces in other conformance- and metadata-focused projects (such as
BWF MetaEdit and QCTools) and plans to use the File List Layout as an interface center for batch file
metadata operations.

Customizable Sections The contents of the File List will be configurable according to the metadata
values indexed by Medialnfo during a file parse. In the case of Matroska files these metadata values will
also be categorized according to their enclosing Matroska section. These sections include:

e Header

e Meta Seek
e Segments

e Tracks

e Chapters

e Clusters

e Cueing Data
o Attachment
o Tagging

In addition to the Matroska sections, a category of file attribute data will also be provided to show infor-
mation such as file size, file name, etc. Additionally, a ‘global’ section is provided to show summarization
of the file’s status and structure.

A toolbar in the File List Layout will enable the user to select one or many sections to allow for focus on
a particular section.

As an example, checking to show the columns associated with the Matroska Header shall reveal columns
such as:

45

o File format (Matroska, Webm, etc)
o Format version (version of Matroska, etc)
e Minimum read version

A global section would provide informational columns such as:

e Amount of VOID data with the Matroska file

e Percentage of CRC coverage with the Matroska file
e Number of metadata tags

e Number of chapters

e Number of attachments

As metadata tags may vary substantially, the tagging section of the File List Layout will show selected
top-level metadata tags as well as a column to summarize what top-level metadata tags are not shown.
Columns values which show top-level metadata tags which contain child elements shall note visually when
that tag contains child tags and reveal a summarization of child values over mouse-over. Further interaction
with of lower level metadata tags can be better found in the (Metadata Editor Layout)[####mkv-
metadata-editor-layout] which shall be linked from each row of the File List Layout. Within the tag
setion of the of the File List Layout the shown top-level metadata tags may be edited directly.

The order and selection of viewed columns within the File List Layout may be saved and labelled to
configure the display. This feature will allow users to design and configure layouts for particular metadata
workflows. MediaArea plans to provide specific layouts in accordance with the objective of particularly
OALIS functions, such as to supply contextual metadata about a digitisation or acquisition event.

Managing State of Metadata Edits/Fixes A toggle within the toolbar will switch the table’s
editable entries from read-only to editable, to help prevent inadvertant edits. Each row of the File List
Layout shall contain a visual status icon (File Edit State Icon) to depict the state of the file’s metadata
state. The File Edit State Icon will show if the file has been edited through the UI to different values
than the file actually has; for instance, if the file must be saved before the shown changes are written
back to the file. Metadata values within editable layouts shall appear in a different font, style or color
depending on if they show what is actually stored or altered data that has not yet been saved back to the
file. By selected a row which has an edited but unsaved state, the user shall be able to selet a toolbar
option to revert the file’s record back to its original saved state (to undo the unsaved edit).

Relational to Conformance / Policy Layouts The File List Layout shall contain a column to
summarize conformance and policy issues with each open file and link back to the associated sections to
reveal more information about these issues.

MKYV Metadata Editor Layout The Metadata Editor Layout is designed to efficiency create, edit,
of fix metadata on a file-by-file basis. The interface will show the contents of the Matroska tag section and
provide various Ul to facilitate guided metadata operations, such as providing a date and time interface
to provide expresses for temporal fields, but also allowing text string expressions for all string tags as
Matroska allows.

e Provide a table to show one row per metadata tag
e Provide columns with following values
— Hierarchy

* A relator to link tags to one another in parent/child relationships
x A UI toggle to show or hide child metadata tags

— Target Section

* TargetTypeValue
* TargetType
* TargetSummarization of track, edition, chapter, and attachment targets

46

— Metadata Section

TagName

TaglLanguage

TagDefault (boolean)

TagContent (combination of TagString, TagStringFormatted, and TagBinary UI)

S S S

— Tag Status Section

* Tag validation status (alert on tags adherance to specification rules, logical positioning,
and formatting recommendation)

Interface Notes Hierarchy

Each row of the metadata tag table may be freely dragged and dropped into a new position. Although
this is usually semantically meaningless, the user should be able to organize the metadata tags into
a preferred storage order. An example of this express in the UI could be that the Hierarchy column
shall contain a positioner icon that the user may grab with the mouse to position the row in a different
order. The positioner icon should also be able to be dragged left or right to affect the neighbor or child
relationship to the metadata tag positioned above. For instance if there are two tags in the table at the
same level called with the first called ARTIST and the second URL then both the ARTIST value and
URL value refer to the declared target. However if the positioner icon of the URL tag row is moved to
the right then the UTI should indictate that the URL tag is now a child of the ARTIST tag, and thus the
URL documents the URL of the ARTIST rather than the target.

Target Summarization

Each metadata tag may be associated with the context of the whole file or many specfic targets. For
instance a DESCRIPTION may refer to one or many attachments or a particular chapter or a particular
track, etc. In order to show the targets concisely the Ul should present a coded summary to show one
value that indicates the type and number of related target. The TargetSummarization may how “A3”
to indicate that it refers to the third attachment, or “T4” to indicate that it refers to the fourth track.
When the TargetSummarization is moused over a popup should reveal a list of associated targets with
the UID and perteninet details of each target as well as a link to jump to a focus of that target within its
corresponding layout (such as the Chapter Layout or Attachment Layout).

Tag Content Bahavior

Matroska tags may contain either a TagString or TagBinary element. When single-clicking or tabbing
into a TagContent field, the TagContent is a TagString and it shall be directly editable. If the TagContent
is a TagBinary, the TagContentModalWindow shall appear selected to the Binary tab with a guided hex
editor.

Tag Content Modal Window

The TagContent Modal Window is a Ul designed to accommodate editing of TagContent or TagBinary
values. The UI shall contain three tabs:

e String Editor
e Formatted String Editor
e Hexadecimal Editor

When creating a new metadata tag in a matroska file. If the TagName corresponds to a binary type it
will open the Tag Content Modal Window to allow to the binary data to be provided, else it will default
to allowing the metadata tag value to be edited within the string box of the layout in which the metadata
tag was created. If the tag name of the newly created metadata tag corresponds to a binary type then
the Hex Editor tab of the Tag Content Modal Window will be used.

The Hex Editor tab of the Tag Content Modal Window will allow for hexadecimal editing, allow data to
be loaded to TagBinary from a selected file, or saved out to a new file.

When doubling clicking on an existing metadata tag in an editing or file list layout the Tag Content
Modal Window shall open to reveal the most appropriate editing tab. If TagBinary is used then the

47

Modal Window shall open to the Hex Editor tab. If TagString is used than it should use the Formatted
String Editor tab if the data complies with the formatting rules, else use the String Editor.

Validation Status

The validation status indicators and associated procedures are central to the objectives of the Metadata
Fixer. The Matroska specifications is rich with precise formatting rules and recommendations that are
intended to facilitate the predictability and inter-operability of the file format; however, many Matroska
tools and workflows make it easy to inadvertantly violate the specifications or cause conformance issues.
The Metadata Fixer layouts will provide a visual indicator of validation status issues, so that when
files are opened any validation issues are clearly show in relation to the invalid section and linked to
appropriate documentation to contextual the issue. Additionally is an operator makes a modification
that is consider a validation issues, the user will be informed to this issue during the edit and before the
save. If the users tries to save metadata edits back to a Matroska file while their metadata edit contains
validation issues, the user must confirm that this is intended and that the result will be invalid.

In many cases repairs to well defined validation issues are repairable programmatically. The Validation
Status section of layouts will show related repair procedures (if defined) and summarize (to the extent
feasible) the before-and-after effects on the file.

Metadata Import / Export Both the GUI and CLI of the Metadata fixer will allow Matroska
metadata tags to be imported into or exported from a Matroska file using Matroska existing XML
tagging form. In addition to information typically found in Matoroska’s XML tag format, information on
validation status will be included.

Layout Preferences

e Checkboxes to disable appearance of columns in File List Layout

e Functions to allow the currently selected File List Layout options to be saved and labelled
e An ability to load pre-designed or user-created File List Layout options

o A list to specify level 4 Matroska tags to appear in File List Layout as a column

e Default value to use for the default value of TaglLanguage on new metadata tags

Metadata Fixer Command Line Interface
Functional Overview

The Matroska Metadata Fixer command line interface will provide repository systems with a means to
automatically assess what potential fixes may be performed, selectively perform them, add or changes
files metadata, or preform structural changes to the file.

Overall all the features documented in the Metadata Fixer GUI are also feasible within the CLI, although
some scripting may be necessary around the CLI to emulate a fully programmatic performance of all
anticipated GUI workflows.

Functional Requirements include:

 accept one or many Matorska files as well as one or many PREFORMA policy speciications (via
xml) as an input

e generate a text based representation of the EBML structure in json or xml, which identifies and
categories EBML sections and which includes attributes to associate sections of the EBML structure
(or the file itself) with registered conformance or policy errors

o validate a Matroska file against conformance or policy errors and generate a text based output
which summarizes errors with associated fixes

o preform and log identified metadata fixes

¢ add, replace, or remove Matroska metadata values based on a developed EBML equivalent of XPath

48

Reporter Functional Requirements
Functional Overview

The Reporter portion of the conformance checker presents human and machine-readable information
related to implemenation and policy checks, metadata fixes, check statistics, conformance priorities, and
other associated session documentation. This information is derived from the database and multiple
component project APIs, passed through the PREFORMA core and finally combined and transformed
into a desired output. Several output formats allow for external software agents to futher process this
reportage.

Reports will include technical metadata and related checks to formats/streams, and should encompass
not only information about the files being assessed but also the conditions and context of a particular use
(which shell was used, with what policy sets, at what verbosity, etc). A report should accommodate the
expression of results from multiple implementation checkers upon a single file. For example, a Matroska
file that contains a JPEG2000 stream, a FFV1 stream, and a LPCM stream should be able to express
one XML element about the file with sub-elements about each conformity check to reduce redundancy.

The Reporter may accept a previously-generated PREFORMAXML or other supported output format
for collation with other conformance checks. Previously-generated PREFORMAXML reports may also
be transformedn into additional desired outputs.

Design and Functional Requirements

e human-readable supported output formats: PDF, TXT

o machine-readable supported output formats: PREFORMAXML, JSON

« PREFORMAXML output with gzip compression to reduce the impact of large and highly verbose
information

« optional machine-readable supported output formats: CSV/TSV

o report on implementation checks, policy checks, and metadata fixes

e report on information concerning preventative measures for non-conformed files

e option to report verbose bit traces of individual files

e batch reporting features the option to nest specific objects.

Contents

Report Name (“eg.,”Conch Report“), XXXX-XX-XX XX:XX:XX Date (ISO spec)

Implementation Checking Errors Implementation Chcking Warnings

Policy Checking Errors Policy Checking Warnings

Metadata Fixing Documentation (Action measures and preventative measures for non-conformed files)

Individual File general / verbose bit metadata readouts

Reporter Graphical User Interface

The Reporter’s Graphical User Interface displays human and machine-readable data to the end user.
Through a drop-down menu, a user can select the above-mentioned output handlers.

Reporter Command Line Interface

On the Command Line Interface, a user would be able to export a report using flags designating output
and output format (e.g., “~output=XML”).

49

Reporter Web User Interface

Like the Graphical User Interface, the Reporter’s Web User Interface displays human and machine-readable
data to the end user. Through a drop-down menu, a user can select the above mentioned output handlers.

Style Guide

Source Code Guide
Portability

Excelling in cross-platform open source development, MediaArea will utilize tools throughout the devel-
opment phase in order to provide users with a downloadable source code that offers functional portability
between different deployment platforms (MS Windows 7, Mac OSX, and Linux).

The source code can be shared and used between the targeted platforms and will run and behave similarly
across different users’ machines. The various releases will be implemented with adaptable interoperability
between these platforms and the software will run dependent on which downloadable source code and
executable the user’s platform requires. This means MediaArea’s open source project, throughout the
development and deployment phases, will continue to always provide downloadable access to software
and support for each of these individual platforms.

Modularity

MediaArea’s regularly released source codes will be developed within a modularized architecture in order
to create an unrestricted atmosphere for the improvement of the project’s maintainability and assembly.
Conforming to this development technique and creating distinct, interchangeable modules will allow the
software, and its corresponding open source community, to remain sustainable in its growth and facilitate
ongoing collaborative feedback throughout the development phase. Each module will have a documented
interface (API) that defines its function and interactive nature within the software.

The construct and eventual structure of modularity within this project will be key to the health and
sustainability of the project’s potential success as a fully integrated implementation checker. The regular
release of source code for this project, built within this architecture, will enable better feedback and issue
tracking from both users and memory institutions utilizing the software.

Deployment

MediaArea will develop a implementation checker that is designed to allow for deployment in the five
following types of infrastructures and environments:

« PREFORMA’s website

e Within an evaluation framework

o Within a stand-alone system (MS Windows 7, Mac OSX, and Linux)
o Within a network-based system (server or cloud)

e Within various legacy systems

Access release for the intended targeted users will be supported within all of these environments. In
order to demonstrate the project’s successful deployment within these infrastructures, MediaArea will,
in addition to supplying the standard corresponding technical documentation for each, undertake the
following considerations:

The project’s necessary PREFORMA website, including centralized links to all open source materials and
community outreach, will be considered as the official deliverable for the entire project. The associated
and required documentation, tools and instructional feedback will also be provided and accessible on the
PREFORMA project website as well as the open source platform.

50

The implementation checker will also fulfill the requirement of being deployed within the direct infras-
tructure to facilitate evaluation and use within the PCP system.

For stand-alone users or smaller institutions, the implementation checker will be fitted with the capability
to be packaged, downloaded and run as an executable on machine’s running any form of a standard
operating system (MS Windows 7, Mac OSX, and Linux).

The implementation checker will be developed to deploy within different network-based solutions and
environments (including dedicated servers and cloud solutions) hosting the memory institutions’ digital
repositories.

Via written API integration, the implementation checker will also be able to properly function when
plugged into various legacy systems.

APIs

Via APIs, the developed and deployed implementation checker will be designed to interface and integrate
with other software systems. Programming tools and software standards and practices will be upheld in
order to allow for a potential software-to-software interface. A long-term sustainable usage and presence
within the open source community will be further enhanced via correct implementation of this successful
API integration.

The outcome of the ability to interface with other software systems is that the software and technical
documentation will have ongoing support and integration within the individual workflows of the memory
institutions’ preservation plans.

Open Source Practices
Development

MediaArea’s open source software development within the PREFORMA project will establish and uphold
open source work practices and standards. These practices will abide by the following project rules:

e Use of nightly builds: A nightly build is an automated build that reflects the most up-to-date
version of developed software’s source code. Users will have access to these nightly builds as their
release will allow for collaborative groups of developers and users to work together and continuously
gain immediate feedback and fixes to the most current state of the software. With access to the
absolute latest versions, MediaArea and all open source collaborators will more readily gain insight
into potential bugs and issues that could arise during the development phase. Programmers will be
able to determine if they “broke the build”, making the software inoperable with their latest code.
Having immediate access to building, fixing, and patching these issues as they arise allows for a
more efficient workflow.

e Use of software configuration management systems: Operating with a software configuration
management system (Git) will allow MediaArea easy version control as well as knowledge of the
revisions needed. This is an essential part of the open source community that allows developers
to be able to work together collaboratively. A version control system allows multiple people to
work on the same or similar sections of the source code base, asynchronously or at the same time,
with awareness and prevention of overlapping or conflicting work. Git will be used as the software
configuration management system for this project.

e Use of an open platform for open development: MediaArea will operate within an open source
platform on which to develop software and better facilitate the open development of that software.
Public visibility that allows anyone the ability to contribute to the software’s development allows
for sturdier, more reliable outcomes. Feedback is more easily sought and more readily provided
with the use of an open platform. GitHub will be used as the open platform for open development
of this project.

51

Open Source Platforms

All software development as well as the development of all relevant and corresponding digital assets and
tools created by MediaArea during the PREFORMA project will exist and function as an open source
project within an open source platform (GitHub). This open source development platform will offer full
transparency and traceability throughout the development phase and facilitate a functional collaborative
environment with developers, users, stakeholders, and institutions.

Source code, issue tracking, documentation, updates, release and various forms and channels of public
outreach will be centralized within the open development platform and linked to within the PREFORMA
project page.

Contribution Guide
File Naming Conventions

All project files related to documentation regarding the PREFORMA project will be named using
CamelCase. Project documentation’s actual sample data will be shared using the snake_ case. These
objects should carry a suitably descriptive file name that elaborates on the contents of the file and follow
the standard practices and expectations of their corresponding naming conventions and specifications.
File naming conventions and rules will be upheld in order to implement an efficient database of document
and file releases within the open source community. In regards to the required conventions for commit
messages on the open source platform, all messages should be concise and clear and effectively summarize
each contribution to the project. If more than one substantial change was made, users should not create
one commit message to cover all feedback and changes. New individual commits should be made to
cover each individual change made to the relevant file being altered. Effective commit messages, covering
context of a change, will enable MediaArea to work within a speedier, more efficient review process and
better alter development around this feedback.

Rules for Qt/C++ code

MediaArea’s open source project will be programmed in C++ and will use the Qt application framework.
Guideline for Qt is as follows:

MediaArea will follow the applicable rules for programming within the Qt cross-platform application
development framework.

Attention to detail will be given to the following rules/guidelines:

Indentation:
o Four spaces to should be given for indentation (not tabs)
Variables:

e Each variable should be declared on separate lines, only at the moment they are needed
« Avoid short names, abbreviations and single character names (only used for counters and temporaries)

o Follow the case conventions for naming
Whitespaces:

o Use only one blank line and use when grouping statements as suited. Do not put multiple statements
onto one line.

e Also use a new line for the body of a control flow statement

52

o Follow the specific single space conventions when needed
Braces:

o Attached braces should be used (follow guidelines for rules and exceptions)
e Curly braces are used only when the body of a conditional statement contains 1+ line or when
body of a conditional statement is empty (follow guidelines for rules and exceptions)
Parenthesis:
e Parenthesis should be used to group expressions

Switch Statements and Jump Statements:

e Case labels are in the same column as the switch

¢ FEach case should have a break statement at the end or a comment to indicate there is no intentional
break

e Do not use ‘else’ at the end of Jump Statements unless for symmetry purposes
Line Breaks:

e Lines should kept under 100 characters
e Wrap text if necessary

e Use commas at the end of wrapped text and operators at the beginning of new lines
Exceptions:

e Always try to achieve functional, consistent and readable code. When code does not look good,
exceptions to the rules may pertain to fixing this situation.

For more specific rules, examples, exceptions and guidelines, please refer to the Qt Coding Style guide:
http://qt-project.org/wiki/Qt_ Coding_ Style

Guidelines for C+-+ code is as follows:

Manageability and productivity within the C++ coding atmosphere will be preserved by upholding to
the Style and Consistency rules necessary for creating a readable and controlled code base. Attention to
detail will be given to the rules governing the creation of a workable open source code in the following
areas:

o Headers

e Scoping

e Classes

e Naming

e Comments

o Formatting

« Specific Features/Abilities of C++
e Relevant Exceptions

For a detailed account of specific rules, examples and guidelines for each section, please refer to the
Google guide on C++: http://google-styleguide.googlecode.com/svn/trunk/cppguide.html

53

Rules for contributing code

Contributions of code or additions to MediaArea’s PREFORMA project documentation must be written
with Qt (following the advised standards and practices) and must be made in the form of a branch
submitted as a pull request.

o Create your feature branch (git checkout -b my-new-feature)

o Commit your changes (git commit -am ‘adds some feature’)

o Push to the branch (git push origin my-new-feature)

e Create a new Pull Request with a more verbose description of the proposed changes

Link to GitHub repository: (https://github.com/MediaArea/PREFORMAMedialnfo/fork)

Rules for contributing feedback

Feedback of all kind is encouraged and can either be made through opening an issue on GitHub or by
contacting the team directly at info@mediaarea.net.

Issue tracking and feedback will be encouraged directly through the open source platform (GitHub)
around which, in addition to PREFORMA’s Open Source Portal, MediaArea will function and centralize
the anticipated infrastructure for a collaborative community environments. In addition, contributions
and feedback can be left via either the IRC channel or the mailing lists pertaining to the project.

Linking

MediaArea will implement linking throughout the open source community in order to create a sustainable
and documented infrastructure that facilitates clarity in the progression of the project. In order to
produce an environment that offers both the users and MediaArea a space for descriptive feedback,
intuitive discoveries within the code, and the ability to resolve issues, linking will function through the
released source code, the corresponding software documentation, a ticketing system, general feedback, and
potential commit messages. In one such example, as the registry itemizes user’s individual conformance
checks and tests, these tests will subsequently link to code blocks and commits so that the software can
continue to be developed and associated to that conformance check.

If this habit is implemented efficiently, MediaArea will create an open source community that enables
ease in interacting and reviewing with both user-friendly and human-readable descriptions of conformity
checks combined with their related programmatic results.

Test Files

MediaArea’s test files and media will exist in the SampleTestFiles folder within the open source platform.
This designated sample folder will also be broken down into separate folders for each relevant file format
and the separate specification parameters set for testing.

It is anticipated that a large library of reference media and test files will be created to highlight the different
outcomes associated with issues and errors that may arise in regards to certain files and specifications
push through the software. The test files will either be self-created, solicited, or pulled from a variety of
online reference libraries.

This curated selection of tests will include the following:

o files that conform to the relevant file format’s technical specifications

o files that do not conform and therefore deliberately deviate from the file format’s technical specifi-
cations (in association with the appropriately coded error messages)

o specific files that originate from and/or adhere to the technical specifications of the file formats
from participating memory institutions (including examples that both conform to and deviate from
the requirements)

54

Because it is crucial to the stimulation of a sustained and well documented open sourced community, the
resulting issues and feedback from the testing of these created and solicited files will also be documented
and will contain information on the relevant version of software used for the test.

Release Schedule

MediaArea intends to release various versions of all relevant source codes and executables for each of
the deployment platforms that the project will be configured to perform upon successfully. For stable
versions of the software, new downloads and rolling releases will be provided and made available on a
monthly basis. Stable versions will take into account software fixes, updates, and bug reports throughout
the development phase and additionally will have gone through a QA process during that time.

Certain deployed (LTS) versions, upholding the build of the stable versions, will be provided and released
during the required delivery stages of the PREFORMA project and will be developed as sustainable for a
long period of time within the open source project.

New nightly builds and updates of the source code will also be made available to download during all
stages. This ensures that all users and organizations will have access to downloading the most up-to-date
version of code that exists throughout the project.

Downloads will be made available through a public repository with a functioning issue tracker (GitHub).
In conjunction with the releases, a roadmap will be created in order to track these updates publically and
encourage open collaborative usage and issue feedback. Both the older and more recent development,
stable, and deployed (LTS) versions will be made available to users of any level, throughout these multiple
platforms, for the entirety of the project. If a user wishes to download an older version of the source code
or executable, MediaArea will have this option available.

All source codes and updates will be made accessible on the following platforms:

e MS Windows
e Mac OSX
o Linux (Ubuntu, Fedora, Debian, and Suse)

In regards to the nightly source code builds and monthly stable version releases, MediaArea will facilitate
easy access for users to download each of these different versions with the creation and upkeep of a single
file that contains all of the necessary open source tools. Taking into account the varying deployment
platforms, a different file (containing all relevant documents) will be created for each. The expected and
differing standard procedures and patterns between the different platforms, as well as their individual
configurability rules, will be upheld throughout the development and release phases. Support will be
accessible via all of these platforms.

Along with the downloadable codes and tools, full supplementary documentation, developed to suit
users functioning on each platform, will be included within the release schedule and will stay up-to-date
with those releases. The necessary steps required in downloading and extracting MediaArea’s source
code and software build, in order to created a directly executable object on the user’s machine, will
be fully documented for every type of user. We intend on establishing and releasing informational
documentation including detailed, step-by-step instructions for both a non-technical and highly technical
user or institution.

License

All software releases and digital assets delivered by MediaArea will be produced and made available under
the following Intellectual Property Rights (IPR) conditions:

o All software developed by MediaArea during the PREFORMA project will be provided under the
following two open source licenses:

— GNU General Public License 3.0 (GPLv3 or later)

55

— Morzilla Public License (MPLv2 or later)

e All source code for all software developed by MediaArea during the PREFORMA project will always
be identical and functional between these two specific open source licenses (“GPLv3 or later” and
“MPLv2 or later”).

o All open source digital assets for the software developed by MediaArea during the PREFORMA
project will be made available under the open access license: Creative Commons license attribution
— Sharealike 4.0 International (CC BY-SA v4.0). All assets will exist in open file formats within
an open platform (an open standard as defined in the European Interoperability Framework for
Pan-European eGovernment Service (version 1.0 2004)).

Conclusion

The PreForma project challenge presents an opportunity for stakeholders of digital preservation to work
together and develop meaningful solutions to file format conformance issues. MediaArea is proud to
be among the several successful applicants of the initial PreForma tender, and is confident that our
submitted Phase 1 proposal for the creation of a Matroska, FFV1 and LPCM conformance checking
toolset will greatly enhance the project’s overall scope.

At the core of the PreForma project is the conformance checker, which, when produced, will implement
meaningful file format validation for long-term digital preservation. MediaArea is focused on developing
the checker and its related environment. MediaArea’s previous work Medialnfo and QCTools projects
have led to a refined project development with risk management strategies.

While LPCM endures as a prevalent raw audio stream, Matroska and FFV1 remain largely as outliers of
digital preservation policy discussions among memory institutions. We believe that this is mostly due
to misapprehensions of Matroska and FFV1. In addition to the development of a conformance checker,
MediaArea presents a plan to strengthen the disclosure, transparency, and credibility of Matroska and
FFV1 through standardization and adoption by relevant standards bodies.

MediaArea welcomes the opportunity to see the Conch project through its completion.

56

	Conch – Conformance checking for audiovisual files
	INTRODUCTION TO DESIGN SPECIFICATION
	Introduction of Featured Formats
	Matroska
	FF Video Codec 1 (FFV1)
	Linear Pulse Code Modulation (LPCM)

	Development of a conformance checker
	Implementation Checker
	Policy Checker
	Reporter
	Metadata Fixer
	Shell
	Optimization for Large File Size
	Focus on Fixity
	Reference and Test Files

	Intended Behavior by Use Case
	Overview
	Conformance Checking at digitisation Time
	Conformance Checking at Migration Time

	The team and roles
	Community
	Artefactual Systems and Archivematica
	Project Advisors
	Open Source Sponsorship

	Example of usage in European Memory Institutions
	Open Source Ecosystem
	Cross Platform Support
	Online Resources
	Community Interviews
	Advance Improvement of Standard Specification

	Sustainable Open Source Business Ecosystem
	Participation at Open Source conferences
	Project Management Strategy
	Goal
	Method
	Justification/Purpose
	Intended Result
	Risk Analysis Model
	Internal Risk Assessment

	Timeline
	INTRODUCTION TO FUNCTIONAL SPECIFICATION
	Applicability
	Portability
	Scalability
	Distribution
	Modularity
	Deployment
	Interoperability

	Global Architecture
	Checker Architecture

	Global Architecture
	Architecture schema
	Common to all elements
	File access
	File processing
	Internet Access
	Automation
	Batching
	Prioritization
	RESTful API
	Offline Access

	Core (Controller)
	Database
	Scheduler
	Files listener
	Implementation checker and Metadata Grabbing Module
	Policy checker
	Reporter
	User interface

	Checker Architectural Layers
	Transport layer
	Conch: File on disk or direct memory mapping
	Plugin integration proof of concept: libcURL

	Container/Wrapper implementation checker
	Conch
	Plugin integration proof of concept: mkvalidator
	Optional

	Container/Wrapper Demultiplexing
	Conch

	Stream/Essence implementation checker
	Conch
	Plugin integration proof of concept: jpylyzer
	Optional

	Stream/Essence decoder
	Conch
	Plugin integration proof of concept: OpenJPEG

	Container/Wrapper vs Stream/Essence Coherency Check
	Conch

	Baseband Analyzer
	Conch

	Implementation Checker Functional Requirements
	Introduction
	Registry of Checks
	Demultiplexing
	Implementation Checker

	Policy Checker Functional Requirements
	Policy Checker Graphical User Interface
	Design & Functional Requirements

	Policy Checker Command Line Interface
	Functional Overview
	Design and Functional Requirements

	Metadata Fixer Functional Requirements
	Introduction to Graphical User Interface
	Design & Functional Requirements

	Metadata Fixer Command Line Interface
	Functional Overview

	Reporter Functional Requirements
	Functional Overview
	Design and Functional Requirements
	Contents
	Reporter Graphical User Interface
	Reporter Command Line Interface
	Reporter Web User Interface

	Style Guide
	Source Code Guide
	Portability
	Modularity
	Deployment
	APIs

	Open Source Practices
	Development
	Open Source Platforms

	Contribution Guide
	File Naming Conventions
	Rules for Qt/C++ code
	Guidelines for C++ code is as follows:
	Rules for contributing code
	Rules for contributing feedback
	Linking
	Test Files

	Release Schedule
	License
	Conclusion

