

Workprogramme 2014-15 e-Infrastructures

DCH-RP final conference 22 September 2014

Wim Jansen eInfrastructure DG CONNECT European Commission

European Commission

e-infrastructure

DEVELOPMENT AND DEPLOYMENT OF E-INFRASTRUCTURES AND SERVICES FOR RESEARCH

Jason de Caires Taylor, underwater statue, Cancun Mexico

Commission

Vision

ACHIEVING DIGITAL ERA BRIDGE DIGITAL DIVIDES EVERY RESEARCHER DIGITAL

Approach &

Transversal Cutting across disciplines and sectors Support tomorrow's science Open science, open access, best solutions Enabling innovation Developing and testing innovative solutions Servicing industry and SMEs Spinning out technologies

DRIVERS for change

- MORE COMPUTING POWER
- **BIG DATA**
- **GLOBAL CONNECTIONS**
- GLOBAL PARTICIPATION OPEN IS BETTER
 - WITHIN AND BETWEEN SCIENTIFIC COMMUNITIES
 - BETWEEN SCIENCE AND SOCIETY

CHALLENGES

Need for long term perspective

- Operational continuity
- Sustainability
- Efficient and effective use of national and EU funding
- Resolving strategic, policy, legal, technical, financial and governance issues
- Innovation as a priority
 - Support SMEs
- Support to Horizon 2020

FET Human Brain Project,...

LEIT Big Data in ICT,... **Societal Challenges**

SC1 Research on Alzheimer

SC2...

SC3 Earth observation

SC4, SC5,

e-Infrastructure to support:

- Research under Horizon 2020
- Open Access policy
- Open Data pilot
- Data Management Planning

• ...

e-Infrastructures

e-Infrastructure integrates resources and services...

> Networking Computing Data Software User interfaces

Research Infrastructures in Horizon 2020

B B B B B	Developing the European research infrastructures for 2020 and beyond		
DEB	Developing new world class RI	Integrating and opening existing national RI of pan-European interest	Development, deployment and operation of ICT based e- Infrastructures
Fostering the innovation pot and their human capital	ential of Ris	to impleme	entation
Reinforcing European RI poli and international cooperatio	cy n Matrix app	roach to	

Call 3 <u>Topic 1</u>: Managing, preserving and computing with big research data

Challenges:

MANAGING, PRESERVING AND COMPUTING WITH BIG RESERACH DATA

- Capacity increase to manage, store and analyse extremely large, heterogeneous and complex research datasets, including text mining of large corpora
- Integrated, secure, permanent, on-demana service-driven, privacycompliant and sustainable e-infrastructures incorporating advanced computing resources and coftware
- Provision of services cutting across a wide-range of scientific communities and addressing diverse of computational requirements
- Legal constraints and requirements, system and service architectures, formats, types, vocabularies and legacy practices of scientific communities

Call 3 <u>Topic 1</u>: Managing, preserving and computing with big research data

Scope:

MANAGING, PRESERVING AND COMPUTING WITH BIG RESERACH DATA

- A federated pan-European data e-infrastructure
 - cost-effective and interoperable solutions for data management and long term preservation

• Services for quality and reliability

- including certification methanisms and services
- Federating data management and curation tools and services
 - on the basis of an open architecture
 - support development of Data Management Plans
- Large scale virtualisation of data/compute centre resources
- Support to European Grid Infrastructure to achieve
 - long-term sustainability of grid infrastructures in Europe
 - added value to NGI's

Call 3 <u>Topic 1</u>: Managing, preserving and computing with big research data

... scope:

MANAGING, PRESERVING AND COMPUTING WITH BIG RESERACH DATA

Proof of concept & prototypes of data infrastructure- enabling software

- extremely large or highly heterogeneous data ets
 - e.g. for databases or data mining

Enabling aggregation of content for textual analysis

- Platform for text mining, analytics, visualisation
- Consulting and counseling services on the legal framework and permissions to text mine collections

PaaS platform platform as a service

- Long-tail communities regard IaaS as too time consuming with uncertain benefit
- PaaS level of abstraction reduces the learning curve and provides an easier and powerful tool
- Building on today's e-infrastructures including EGI and cloud providers
- Probable candidates: running PaaS implementations and other developed under FP7

Conditions for the Managing, Preserving and Computing with Big Research Data to

MANAGING, PRESERVING AND COMPUTING WITH BIG RESERACH DATA

- Type of action:
 - Research and Innovation Action
- Call 3 e-Infrastructures
- Deadline for the submission of proposals:
 02/09/2014
- Overall budget: **55** M€

Call 3 <u>Topic 5</u>: Centres of Excellence for Computing applications

Challenges

CENTRES OF EXCELLENCE FOR COMPUTING APPLICATIONS

Establish a limited number of user-centred Centres of Excellence (CoE) in the application of HPC for addressing scientific, industrial or societal challenges. They may be thematic, transversal or challenge driven.

The CoE's are expected to be:

- **User-driven**, with the application users and owners playing a decisive role in governance
- **Integrated**: encomparsing not only HPC software but also relevant aspects of hardware, data management/storage, connectivity, security, etc.
- **Multidisciplinary**: with domain expertise co-located alongside HPC system, software and algorithm expertise
- Distributed with a possible central hub, federating capabilities around Europe, exploiting available competences, and ensuring synergies with national/local programmes

Proposals for CoEs will provide pan-European services such as:

consultancy to industry and SMEs

- OF EXCELLENCE FOR COMPUTING APPLICATIONS
- developing, optimising and scaling HPC application codes towards peta and exascale computing
- testing, validating and maintaining codes and managing the associated data
- quality assurance
- co-design of hardware, software and codes
- **research** in HPC applications
- addressing the skills gap in computational science

They will aim at

- synergy with exascale R&D through co-design
- Sustainability sear business plans
- creating communities around specific codes that impact the target sectors, involving ISVs, and exchange of best practices in particular for SMEs
- a governance structure driven by the needs of the users
- commercial management expertise

Example application/thematic areas

- Medicine & life sciences
- Biology, genomics and drug discovery
- Weather, climate & solid earth sciences
- Industrial applications & engineering
- Materials science, chemistry, and manoscience
- Astrophysics, high-energy physics and plasma physics

Other examples might be oriented around **societal/industrial challenges**, such as `personalised health/medicine', `cleaner production', 'safer car', 'smart cities' ...

...or around **industry sectors** like pharma, automotive, oil and gas ...

CENTRES OF EXCELLENCE FOR COMPUTING APPLICATIONS

Expected Impacts

- Improved access to computing applications and expertise
- Improved competitiveness for companies and SMEs
- European leadership in applications that address societal challenges and/or industrial applications
- More scientists and engineers trained

International co-operation is encouraged where there are clear mutual benefits and the partners have the relevant HPC capacity

CENTRES OF EXCELLENCE FOR COMPUTING APPLICATIONS

Conditions for the Centres of Excellence topic:

- Type of action:
 - Research and Innovation Action
 - Call 3 e-Infrastructures
- Deadline for the submission of proposals:
 - 14/01/201
- Overall budget: 40 M€
- 8-10 CoEs are expected to be funded
 - Follow up Call is expected in the future
- Indicative budget per proposal: 4 -5M€

CENTRES OF EXCELLENCE FOR COMPUTING APPLICATIONS

Call 3 Topic 9 Virtual Research Environments - VRE

E-INFRASTRUCTURES FOR VIRTUAL RESEARCH ENVIRONMENTS (VRE)

VREs are... groups of researchers, typically **widely dispersed**, who are **working together** through ubiquitous, trusted and **easy access to services** for **scientific data, computing and networking** in a collaborative, **virtual** environment: the e-Infrastructures

Characteristics:

- Address the needs of specific scientific communities in support of e-Science;
- Have users from both academia and industry;
- Involve bottom-up research and develop user-oriented services;
- Are based on e-infrastructures

Call 3 <u>Topic 9</u>: Virtual Research Environments - VRE

E-INFRASTRUCTURES FOR VIRTUAL RESEARCH ENVIRONMENTS (VRE)

Specific Challenge:

Capacity building in interdisciplinary research through community-led development and deployment of service-driven digital environments for large-scale cross-disciplinary research collaboration and data interoperability

Expected Impact:

- More effective collaboration between researchers and increased takeup of collaborative research by new disciplines
- Easier discovery, access and re-use of data, resulting in higher productivity of researchers
- Accelerate innovation via access to integrated digital research resources across disciplines

Call 3 <u>Topic 9</u>: Virtual Research Environments - VRE

E-INFRASTRUCTURES FOR VIRTUAL RESEARCH ENVIRONMENTS (VRE)

Scope:

- Integration of resources across all layers of the einfrastructure (networking, computing, data, software, user interfaces) → cross-disciplinary data interoperability
- Requirements from real use cases → integrate heterogeneous data from multiple sources and re-use tools and services from existing infrastructures
- Target: any area of Science and Technology, especially interdisciplinary ones
- **Standardised** building blocks and workflows, welldocumented interfaces and interoperable components
- Define semantics, ontologies and metadata to enable data citation and promote data sharing, to ensure interoperability
- Easy-to-use functionalities

Conditions for the VRE topic:

E-INFRASTRUCTURES FOR VIRTUAL RESEARCH ENVIRONMENTS (VRE)

- Type of action:
 - Research and Innovation Action
- Call 3 e-Infrastructures
- Deadline for the submission of proposals:
 14/01/2015
- Overall budget: **42** M€
- Indicative budget per proposal: 2 8 M€

New professions and skills for e-infrastructures

HOW TO BRIDGE THE GAP BETWEEN SCIENCE AND ICT?

New professions and skills for e-infrastructures

Coordination and Support Action

HOW TO BRIDGE THE GAP BETWEEN SCIENCE AND ICT?

Data scientists

Sci

E-infrastructure operators

Research technologists

ICT professionals

Call 4 Topic 4: New professions and skills for einfrastructures: Challenges **NEW PROFESSIONS** AND SKILLS

FOR E-INFRASTRUCTURES

Specific Challenges:

- Researchers, university professors and students need adequate support in computing and networking, as well as in handling, analysing and storing large amounts of digital content.
- Education programmes for the emerging professions of e-• infrastructure operators, research technologists, data scientists or 'data librarians' need to be defined and developed
- Professional recognition of these communities and the development of appropriate curricula, training and skills are crucial to ensure effective services to institution staff and students.
- Wider opportunities for training of these communities need to be offered

Call 4 Topic 4:New professions and skills for einfrastructures: Challenges NEW PROFESSIONS AND SKILLS

FOR E-INFRASTRUCTURES

Scope:

- Defining/updating a **university curricula** for e-infrastructure
- **Training programmes** for e-infrastructure professionals
- Establishment of these professions as distinct professions
- Networking and information sharing among e-infrastructure operators
- Awareness raising and promotion of e-infrastructures community champions

Call 4 Topic 4:New professions and skills for einfrastructures: Challenges **NEW PROFESSIONS**

AND SKILLS FOR E-INFRASTRUCTURES

Impact:

- The number of education institutions offering degrees for einfrastructure experts, research technologists, data scientists and data librarians should increase.
- Graduates and practitioners in these fields should gain access to degrees, programmes, information sharing tools and training opportunities to improve their skills.
- The number of individuals able to design, develop and maintain e-science tools and services as well as to support researchers with computational and data expertise, should increase significantly.

Call 4 Topic 4:New professions and skills for einfrastructures: Challenges **NEW PROFESSIONS**

AND SKILLS FOR E-INFRASTRUCTURES

Conditions for the topic:

Type of action:

- **Coordination and Support Action**
- Call 4 Support to Innovation, Human resources, Policy and International cooperation
- Deadline for the submission of proposals: 14/01/2015
- Overall budget: 2.5 M€

Conditions for the Call on e-Infrastructures:

Specific conditions :

- Proposals should be structured around Networking, Service and Joint Research Activities
- The **Software** to be developed needs to be **open source**
- A Data Management Plan to be developed enabling data preservation, on-line discoverability, authorisation and re-use of data
- Clear Metrics (KPIs) to be proposed and used;
- Open Access to Publications resulting from the project;
- Usefulness of services to the end user community and financial sustainability to be ensured;

Where should the emphasis be?

- Services
 - Thinking innovation
 - With both suppliers or users
- Mainstreaming skills development
- Integration between data and computing
- Business plans for financial sustainability
 - ...and partnerships with the private sector
- Supporting policies
- open data and software
- Sharing basic operations services and building blocks
- Monitoring performance (KPIs)

THANK YOU

European Commission – DG CONNECT eInfrastructures