Cultural Heritage and Research Information: Case 3

Kevin C. Holston Swedish Natural History Museum

2014.06.04

DCH-RP, EUDAT Digital Preservation: Workshop 2

Natural History Collections – Objects as Samples.

Representative specimens from (the natural world) environmental and evolutionary processes

- from a fauna or flora, geographic region
- from a population of individuals
- from a geological formation

Reference material, vouchers Increased sampling, better collections/datasets

Natural History Collections – Objects as Samples.

Representative specimens from (the natural world) environmental and evolutionary processes

Efforts from individual researchers, scientific communities, and institutions to improve knowledge on these processes

Unique perspective from public natural history collections Historical Reassessment (detailed assessment)

Conflict between curation and research.

Collection Inventories Physical placement, condition – static nomenclature Focus on summaries on collections

Biodiversity Informatics Datasets Scientific observations – dynamic nomenclature Focus on summaries on trans-collection record sets

Enrichment of datasets Secondary data (voucher associations, locality and specimen characterizations, recognition of collectors)

Conflicts resolved by new procedures and technological advances.

Persistent identifiers, (globally) unique Specimen-level (collection object) registration Industrial techniques rather than new technology Data management systems (not-so-big data)

User interfaces to accommodate multiple, novel workflows Standards and exchange schemas

Dataset Integration – Data Sharing

Common ground between curation and research.

Collection Inventories and Biodiversity Informatics Datasets

Primary data – from analog to digital form Persistent identifiers, (globally) unique, normalization

Secondary data

Limited resources, difficult to stabilize criteria used to prioritize data capture (which collection objects, which characterizations?)

Classifications are organizing principles.

Collection Inventories and Biodiversity Informatics Datasets

Authority files Determinations (taxonomic names) Georeferences (place names) Geological age, lithography, stratigraphy

Access and application rather than local management

Useful Assumptions

Database records are observations.

Primary data – from analog to digital form Collector, locality (site), date

> Determinations (taxonomic names), type status Images (figures)

Secondary data Descriptions – do not change over time (e.g, specimen measurements, life stage and sexual maturity) Voucher associations (e.g., DNA (consensus) sequences

Useful Assumptions

Observation Categories and Data Overlap

RECORD CONTENT, CIRCUMSCRIPTION

preparation, details storage details (transactions)

counts (total within storage unit, "actual" collection object totals)

sets: treatment, project, lab experiment or sample preparation

DATABASE OBJECT DATA

collection object, biological attributes locality characterization (attributes)

counts (total in field [sample], population survey totals)

sets: expedition, field experiment (e.g., sampling along transect)

BIOLOGICAL OBSERVATION DATA

inst_1	storage_1	OBS_0001	Taxon Det.	uniq_obs_1	collevent_1	locality_1
inst_1	storage_1	OBS_0002	Taxon Det.	uniq_obs_2	collevent_2	locality_2
inst_1	storage_1	OBS_0003	Taxon Det.	uniq_obs_3	collevent_3	locality_3
inst_1	storage_1	PAL_0001	Taxon Det.	uniq_obs_4	paleoev_1	paleoev_1
inst_1	storage_1	MUS_0001	Taxon Det.	uniq_obs_5	collevent_4	locality_1
				\		
inst_1	storage_1	CITA_0001	Taxon Det.	uniq_obs_5	collevent_4	locality_1
inst_1	storage_1	CITA_0002	Taxon Det.	uniq_obs_5	collevent_4	locality_1
inst_1	storage_1	CITA_0003	Taxon Det.	uniq_obs_5	collevent_4	locality_1
				`		
inst_1	storage_2	LAB_0001	Taxon Det.	uniq_obs_5	collevent_4	locality_1
inst_2	storage_3	LAB_0002	Taxon Det.	uniq_obs_5	collevent_4	locality_1
inst_2	storage_4	LAB_0003	Taxon Det.	uniq_obs_5	collevent_4	locality_1

There are benefits from incorporating new procedures at natural history collections.

Persistent identifiers, normalization, collection object registration

- effective, periodic summaries
- application of data harvesting tools
- engagement of current digitization "personnel"
- data sharing (public) "dissemination"

Useful Assumptions

Workflows. Imperatives for a Repository or Laboratory.

Repository: Manage/organize the collections! Summarize holdings, maintain condition (high quality)

Taxonomic Determinations

Laboratory: Characterize the collections! Create derivative objects from collected objects and associate data (as processed datasets)

DINA project case studies

Collection object relationships – containers, lots and mixed bags. Batch, composite and derivative objects.

Collection Object Relationships

Collection Object Relationships

Workflows.

Repository: Manage/organize the collections! Summarize holdings, maintain condition (high quality)

Taxonomic Determinations

Svenska insektfaunaarkivet (Swedish Malaise Trap Project) faunal inventory project 2003-2006 field sampling 2007-present, sample sorting material for researchers to examine and analyze

Workflow case studies

Svenska insektfaunaarkivet

Workflows.

Laboratory: Characterize the collections! Create derivative objects from collected objects and associate data (as processed datasets)

(Taxonomic Determinations) Voucher

Department of Bioinformatics and Genetics, NRM (Molecular Systematic Laboratory) DNA extractions (derived objects), bioinformatics services to researchers (equipment, technical expertise) for analysis results

Workflow case studies

Department of Bioinformatics and Genetics

Workflows.

Laboratory: Characterize the collections! Create derivative objects from collected objects and associate data (as processed datasets)

Taxonomic Determinations

Department of Geosciences (Laboratory for Isotope Geology) subsamples of rocks and water services to researchers (equipment, technical expertise) for analysis results

Workflow case studies

Department of Geosciences

 Further workflow complexity for systems interoperability and data accessibility

Workflow case studies

Workflows. Participation of Diverse Agents.

Curators, technicians, researchers (students, guests, staff), volunteers

The Crowd. (quality issues)

Programmers, database administrators, business managers. (control issues) – The Cloud

Workflow case studies

Summary

Collection objects as samples, collections as the result of research-oriented sampling of biodiversity and the environment. *cultural heritage historical archive for research*

Workflows intended to support further characterization of collection objects. *repository – laboratory*

Participation of collaborating groups of agents as cocreators of digitized objects and records (metadata). understanding evolutionary and environmental processes

Thank your for your attention.

DINA, for infrastructure and development

DINA (digital information system for natural history collections) is a project aiming to develop and implement a national database system for collection management.

Museum of Evolution, Uppsala University Herbarium GB, Gothenburg University Gothenburg Natural History Museum Svenska insektfaunaarkivet, Station Linné, Ölands Skogsby Zoological Museum, Lund University Swedish Museum of Natural History

DINA, for infrastructure and development

DINA (digital information system for natural history collections) is a project aiming to develop and implement a national database system for collection management.

The Swedish Species Service (ArtDatabanken) 2013-2016

http://specifysoftware.org

DINA project
Per Ericson
Fredrik Ronquist
Karin Karlsson
Ida Li
Marcus Englund
Kevin Holston

Principal Investigator Principal Investigator Project Leader Software Developer Systems Analyst Systems Analyst, Database Admin

International Consortium – open source development Denmark, Germany (MfN), Estonia (Tartu, Pluto-F), Agriculture and Agri-food Canada, Ottawa Harvard University Herbaria, Boston Kansas and Royal Botanical Garden, Edinburgh.