

FP7-SME-1
Project no. 262289

HARMOSEARCH

Harmonised Semantic Meta-Search in

Distributed Heterogeneous Databases

File: D_4_1_QueryLanguageSpecification.doc Page 1 of 30

D4.1

Semantic query – Query language specification

Due date of deliverable: 2011-06-30

Actual submission date: 2011-06-30

Start date of project: 2010-12-01 Duration: 24 month

Project funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other participants (including the Commission Services)

RE Restricted to a group specified by the Consortium (including the Commission Services)

CO Confidential, only for members of the Consortium (including the Commission Services)

File: D_4_1_QueryLanguageSpecification.doc Page 2 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

PROJECT ACRONYM: HARMOSEARCH

PROJECT CO-ORDINATOR

Company name: [X+O]

Name of representative: Manfred Hackl

Address: Hamburgerstrasse 10/7, A-1050 Vienna, Austria

Phone number: +43-676-842755-100

Fax number: +43-676-842755-599

E-mail: manfred.hackl@xpluso.com

Project WEB site address: www.harmosearch.org

Project Title: Harmonised Semantic Meta-Search in Distributed

Heterogeneous Databases

Grant Agreement: 262289

Starting date: December 2010 Ending date: November 2012

Deliverable Number: D4.1, Version 1.0

Title of the Deliverable: Semantic query – Query language specification

Lead Beneficiary: CPR

Task/WP related to the Deliverable: WP 4, Task 4.1

Type (Internal or Restricted or Public): Public

Author(s): Adriano Venturini, Albert Rainer, Alessandro Forti, Christoph

Herzog, Claudio Prandoni, Federico Galeazzi, Sabine Schneider

Partner(s) Contributing: eCTRL, CPR, TU-WIEN

Contractual Date of Delivery to the CEC: June 30, 2011

Actual Date of Delivery to the CEC: June 30, 2011

File: D_4_1_QueryLanguageSpecification.doc Page 3 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

TABLE OF CONTENTS

1 INTRODUCTION ... 4

1.1 PURPOSE OF THE DOCUMENT .. 4

1.2 RELATIONSHIP WITH OTHER DOCUMENTS .. 4

1.3 STRUCTURE OF THE DOCUMENT ... 4

2 QUERY LANGUAGES ANALYSIS .. 5

2.1 QUERY LANGUAGES OVERVIEW .. 5

2.2 QUERY LANGUAGES ANALYSIS AND SELECTION ...12

3 HARMOSEARCH QUERY REFERENCE MODEL 14

4 HARMOSEARCH QUERY LANGUAGE .. 15

4.1 QUERY LANGUAGE SCHEMA ..15

4.2 QUERY LANGUAGE DESCRIPTION ..20

4.3 EXAMPLE ..27

5 LIST OF FIGURES ... 30

File: D_4_1_QueryLanguageSpecification.doc Page 4 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

In order to allow searching data in a network of data bases with different query

languages in use, not only data but also queries need to be transformed. A

HarmoSearch query language needs therefore to be identified to provide the

necessary specifications on how to encode a query made through HarmoSearch. This

will allow to translate queries described in the language of the organization querying

the system into the one required for the organizations providing data.

Starting from the reference model defined in D3.1, this document presents an

evaluation of the most prominent query languages covering a broad range of queries

– such as XQuery, SQL, SML, etc. The outcome is the definition and the specification

of the HarmoSearch query language, which is based on the query language that best

fulfils the requirements.

1.2 RELATIONSHIP WITH OTHER DOCUMENTS

Inputs to this document come from the deliverable D3.1 Ontology for the Query

Model, which defines the technical requirements for the development of the query

language and the reference model which allows to represent a Harmonise query in

an abstract form.

The query language described in this document will be used for the implementation

of the Query Processor (D4.2) and of the Metasearch Application (D4.3).

1.3 STRUCTURE OF THE DOCUMENT

This document is structured in the following main sections:

 Query languages analysis and selection, which presents an overview of the

most important query languages, analysing them and choosing the most

appropriate to be reused and adapted to become the HarmoSearch query

language

 HarmoSearch query reference model, which reports the HarmoSearch query

reference model (defined in D3.1)

 HarmoSearch query language, which presents and describes the query

language that will be used in the HarmoSearch project

File: D_4_1_QueryLanguageSpecification.doc Page 5 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

2 QUERY LANGUAGES ANALYSIS

2.1 QUERY LANGUAGES OVERVIEW

2.1.1 Query by Example

“Query by example” (QBE) is a database query language for relational databases

developed by IBM in the 1970s in parallel to what has become SQL. It is different from

SQL, and from most other database query languages, in having a graphical user interface

that allows users to write queries by creating example tables on the screen. It is easy to

use, but at the same time, best suited for not too complex query and queries that involve a

few tables.

In this case, the query is not represented by text like in SQL, but by a table structure.

Thus, it is often also called a graphical query language. The reason why this could be of

interest in the HarmoSearch case is that in this case the query language could be

standardized for the whole system, independent of the kind of database each participant

is actually using. In this way, how to create queries and interpret them could be unified,

while each participant could still keep its own query language.

Anyway it is important to remark that every QBE query can be expressed using another

language such as SQL, XQuery, etc.

As already said, a user writes queries by selecting skeleton tables and filling them with

example rows. An example row consists of constants and example elements which are

really domain variables. The domain of a variable is determined by the column in which

it appears, and variable symbols are prefixed with underscore (“_”) to distinguish them

from constants. Constants, including strings, appear unquoted, in contrast to SQL. The

fields that should appear in the answer are specified by using the command P., which

stands for print. The fields containing this command are analogous to the target-list in

the SELECT clause of an SQL query.

That said, if we use a schema like this:

Sailors(sid: integer, sname: string, rating: integer, age:

real)

Boats(bid: integer, bname: string, color: string)

Reserves(sid: integer, bid: integer, day: dates)

where the key fields are underlined, and the type of each field is listed after the field

name, an example of QBE to print names and ages of all sailors with rating = 10, is:

Sailors sid sname rating age

 P._N 10 P._A

File: D_4_1_QueryLanguageSpecification.doc Page 6 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

Comparison operations (<, >,<=,>=, ┐) are allowed as well as ordering, using the

notation .AO(i) (ascending order, priority i), or .DO(j), i.e. Descending Order, priority

j. Therefore to print all fields for sailors with rating > 8, in ascending order by

(rating, age) the query will look like:

Sailors sid sname rating age

P. AO(1) > 8 AO(2)

Like SQL, QBE supports the aggregate operations AVG., COUNT., MAX., MIN., and

SUM.

QBE supports grouping, by the use of G. command.

The SQL clause DISTINCT is represented by specifying “UNQ.” in the table, under the

relation name.

In case of multiple relations, an example of join query could be:

Sailors sids sname rating age

 _Id P. >25

Reserves sid bid day

 _Id _B '8/4/96'

Boats bid bname color

 _B
Interlake

P.

Which will return the colors of Interlake boats reserved by sailors who‟ve reserved a

boat for 8/24/96 and are older than 25.

A condition box can be introduced to:

 Express a condition involving two or more columns

 Express a condition involving an aggregate operation on a group

 Express conditions involving the AND and OR operators. i.e.

Sailors Sid Sname Rating Age Conditions

 P. _A _A<20 OR 30 < _A

Indeed, it is possible to use queries involving AND and OR operator without using the

condition column.

Sailors Sid Sname Rating age

 P. <30

 P. >20

Insertion, deletion, and modification of a tuple are specified through the commands I.,

D., and U., respectively. For example:

Sailors Sid Sname Rating Age

I. 74 John 7 23

File: D_4_1_QueryLanguageSpecification.doc Page 7 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

2.1.2 SQL

SQL often referred to as Structured Query Language, is a database computer

language designed for managing data in relational database management systems

(RDBMS), and originally based upon relational algebra and calculus. Its scope

includes data insert, query, update and delete, schema creation and modification,

and data access control.

The SQL language is sub-divided into several language elements, including:

 Clauses, which are constituent components of statements and queries. (In

some cases, these are optional.)

 Expressions, which can produce either scalar values or tables consisting of

columns and rows of data.

 Predicates, which specify conditions that can be evaluated to SQL three-

valued logic (3VL) or Boolean (true/false/unknown) truth values and which

are used to limit the effects of statements and queries, or to change program

flow.

 Queries, which retrieve the data based on specific criteria. This is the most

important element of SQL.

 Statements, which may have a persistent effect on schemata and data, or

which may control transactions, program flow, connections, sessions, or

diagnostics.

o SQL statements also include the semicolon (";") statement terminator.

Though not required on every platform, it is defined as a standard part

of the SQL grammar.

 Insignificant whitespace is generally ignored in SQL statements and queries,

making it easier to format SQL code for readability.

The most common operation in SQL is the query, which is performed with the

declarative SELECT statement. SELECT retrieves data from one or more tables, or

expressions. Standard SELECT statements have no persistent effects on the

database. Some non-standard implementations of SELECT can have persistent

effects, such as the SELECT INTO syntax that exists in some databases.

Queries allow the user to describe desired data, leaving the database management

system (DBMS) responsible for planning, optimizing, and performing the physical

operations necessary to produce that result as it chooses.

A query includes a list of columns to be included in the final result immediately

following the SELECT keyword. An asterisk ("*") can also be used to specify that the

query should return all columns of the queried tables. SELECT is the most complex

statement in SQL, with optional keywords and clauses that include:

 The FROM clause which indicates the table(s) from which data is to be

retrieved. The FROM clause can include optional JOIN subclauses to specify

the rules for joining tables.

 The WHERE clause includes a comparison predicate, which restricts the rows

returned by the query. The WHERE clause eliminates all rows from the result

set for which the comparison predicate does not evaluate to True.

http://en.wikipedia.org/wiki/Select_%28SQL%29
http://en.wikipedia.org/wiki/Table_%28database%29
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Database_management_system
http://en.wikipedia.org/wiki/Query_plan
http://en.wikipedia.org/wiki/Query_optimizer
http://en.wikipedia.org/wiki/From_%28SQL%29
http://en.wikipedia.org/wiki/Join_%28SQL%29
http://en.wikipedia.org/wiki/Where_%28SQL%29

File: D_4_1_QueryLanguageSpecification.doc Page 8 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 The GROUP BY clause is used to project rows having common values into a

smaller set of rows. GROUP BY is often used in conjunction with SQL

aggregation functions or to eliminate duplicate rows from a result set. The

WHERE clause is applied before the GROUP BY clause.

 The HAVING clause includes a predicate used to filter rows resulting from the

GROUP BY clause. Because it acts on the results of the GROUP BY clause,

aggregation functions can be used in the HAVING clause predicate.

 The ORDER BY clause identifies which columns are used to sort the resulting

data, and in which direction they should be sorted (options are ascending or

descending). Without an ORDER BY clause, the order of rows returned by an

SQL query is undefined.

The SQL language operators belong to 4 categories:

 Comparison Operators, to determine the relationship among data, not only

numerical data but also string operands.

 Arithmetic Operators, to perform calculation within a search, for instance in

this query: Select Salary, (salary + 100) from employees

 Conditional Operators, consisting only of the WHERE clause, used to border

the search.

 Logical Operators: the AND, OR, NOT, XOR operators, possibly used more

than once in the same query.

The following is an example of a SELECT query that returns a list of expensive

books. The query retrieves all rows from the Book table in which the price column

contains a value greater than 100.00. The result is sorted in ascending order by title.

The asterisk (*) in the select list indicates that all columns of the Book table should

be included in the result set.

SELECT *

 FROM Book

 WHERE price > 100.00

 ORDER BY title;

The example below demonstrates a query of multiple tables, grouping, and

aggregation, by returning a list of books and the number of authors associated with

each book.

SELECT Book.title,

 COUNT(*) AS Authors

 FROM Book JOIN Book_author

 ON Book.isbn = Book_author.isbn

 GROUP BY Book.title;

SQL includes operators and functions for calculating values on stored values.

Each column in an SQL table declares the type(s) that column may contain. ANSI

SQL includes character strings, bit strings, numbers, date and time.

http://en.wikipedia.org/wiki/Group_by_%28SQL%29
http://en.wikipedia.org/wiki/Having_%28SQL%29
http://en.wikipedia.org/wiki/Order_by_%28SQL%29

File: D_4_1_QueryLanguageSpecification.doc Page 9 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

Finally SQL includes as sub-sets the following languages:

 Data Manipulation Language (DML) to insert, cancel or modify data (INSERT,

UPDATE, DELETE and MERGE statements).

 Data Definition Language (DDL) to create or delete a database and to modify

the table and index structure (CREATE, ALTER, RENAME, DROP and

TRUNCATE statements).

 Data Control Language (DCL) to manage user and privileges (GRANT and

REVOKE statements)

2.1.3 XQuery

XML Query Language – or simply XQuery – is a functional programming and query

language that is designed to query XML databases or collections of XML data.

From w3schools “XQuery is to XML what SQL is to database tables”.

XQuery provides the means to extract and manipulate data from XML documents or any

data source that can be viewed as XML, such as relational databases or office documents.

The XQuery query reads a sequence of XML nodes and returns a selected sequence of

nodes.

XQuery uses XPath expression syntax to address specific parts of an XML document. It

supplements this with a SQL-like "FLWOR expression" for performing joins. A FLWOR

expression is constructed from the five clauses after which it is named: FOR, LET,

WHERE, ORDER BY, RETURN and it is a generalization of SQL's SELECT-FROM-

HAVING-WHERE construct.

The language also provides syntax allowing new XML documents to be constructed.

Where the element and attribute names are known in advance, an XML-like syntax can

be used; in other cases, expressions referred to as dynamic node constructors are

available. All these constructs are defined as expressions within the language, and can be

arbitrarily nested.

The language is based on a tree-structured model of the information content of an XML

document, containing seven kinds of node: document nodes, elements, attributes, text

nodes, comments, processing instructions, and namespaces.

The type system of the language models all values as sequences (a singleton value is

considered to be a sequence of length one). The items in a sequence can either be nodes

or atomic values. Atomic values may be integers, strings, booleans, and so on: the full

list of types is based on the primitive types defined in XML Schema.

XQuery 1.0 does not include features for updating XML documents or databases; it also

lacks full text search capability. These features are both under active development for a

subsequent version of the language.

Basic syntax:

 XQuery is case-sensitive

 XQuery elements, attributes, and variables must be valid XML names

 An XQuery string value can be in single or double quotes

 An XQuery variable is defined with a $ followed by a name, e.g. $bookstore

File: D_4_1_QueryLanguageSpecification.doc Page 10 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 XQuery comments are delimited by (: and :), e.g. (: XQuery Comment :)

 Conditional expressions ("If-Then-Else") are allowed in XQuery.

 Comparison expressions:

o General comparisons: =, !=, <, <=, >, >=

o Value comparisons: eq, ne, lt, le, gt, ge

The sample XQuery code below lists the title (in alphabetical order) of the books

encoded in the XML document book.xml, whose price is greater than 30 Euros.

This is how the books.xml file looks like:

<?xml version="1.0" encoding="ISO-8859-1"?>

<bookstore>

<book category="COOKING">

 <title lang="en">Everyday Italian</title>

 <author>Giada De Laurentiis</author>

 <year>2005</year>

 <price>30.00</price>

</book>

<book category="CHILDREN">

 <title lang="en">Harry Potter</title>

 <author>J K. Rowling</author>

 <year>2005</year>

 <price>29.99</price>

</book>

<book category="WEB">

 <title lang="en">XQuery Kick Start</title>

 <author>James McGovern</author>

 <author>Per Bothner</author>

 <author>Kurt Cagle</author>

 <author>James Linn</author>

 <author>Vaidyanathan Nagarajan</author>

 <year>2003</year>

 <price>49.99</price>

</book>

<book category="WEB">

 <title lang="en">Learning XML</title>

 <author>Erik T. Ray</author>

 <year>2003</year>

 <price>39.95</price>

</book>

</bookstore>

For an XQuery like this:

for $x in doc("books.xml")/bookstore/book

where $x/price>30

order by $x/title

return $x/title

http://www.ibiblio.org/xml/examples/shakespeare/hamlet.xml

File: D_4_1_QueryLanguageSpecification.doc Page 11 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

the output is:

<title lang="en">Learning XML</title>

<title lang="en">XQuery Kick Start</title>

2.1.4 XML Simple Query

XML Simple Query, also called XSQuery, is the query language adopted by eCTRL‟s

Suggesto Recommender System to simply model a user query.

The query model of this language is based on a query by example approach and

allows conjunction of constraints where each constraint is either a comparison

condition (e.g., colour=red, or cost < 100), a “range” condition (e.g., cost BETWEEN

50 AND 100), or “like” condition (e.g., location LIKE “%fiemme”).

Every XSQuery document contains one or more oneColumnCond element as direct

children of the root XSQuery. Each oneColumnCond constrains a feature of the

target collection. This feature is the content of the identifier element and it is

specified using XPath syntax.

Let X be a collection and x be any element in this collection. Let Tx = { e1 ,…, ek } be

the type of x. To refer to any feature of x, the corresponding XPath notation would

be /X/x/ei (1<=i<=k). For instance the name feature of a Destination in the

DESTINATION collection would be referred by its XPath as

/DESTINATION/Destination/name

The following schema describes the XSQuery syntax used by Suggesto.

Figure 1 XSQuery schema definition

Other type of constraints as well as additional information (e.g. on the context of the

query) can be handled too by defining and adding new elements to the schema.

File: D_4_1_QueryLanguageSpecification.doc Page 12 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

2.2 QUERY LANGUAGES ANALYSIS AND SELECTION

In this section the query languages presented in the previous paragraphs are

evaluated agaist the technical requirements identified in D3.1 in order to select the

most appropriate query language to be used in HarmoSearch.

ID Requirement QBE SQL XQuery XML

FR1 Simple data types +++ +++ +++ +++

FR2 Complex data types + + + +

FR3 Basic operations +++ +++ +++ +++

FR4 Complex operations +++ +++ +++ +++

FR5 Logic operations +++ +++ +++ +++

FR6 Data specific operations ++ ++ ++ ++

FR7 Condition operations ++ + + +++

FR8 Selection operations +++ +++ +++ +++

FR9 Sorting the results +++ +++ +++ +++

FR10 Operations on the results +++ +++ +++ +++

NFR1 Domain independence +++ +++ +++ +++

NFR2 Extensibility ++ ++ ++ +++

NFR3 Robustness and security +++ +++ +++ +++

NFR4 Human readable +++ + + +

NFR5 Easily mappable and convertible + + + ++

NFR6 Open standard/not vendor specific +++ +++ +++ +++

AR1 Identifier of the sender ++ + + +++

AR2 Intended receivers ++ ++ ++ +++

AR3 Type of request ++ + + +++

AR4 Reference to the domains or

collections

++ + + +++

AR5 Geographical region of interest ++ + + +++

File: D_4_1_QueryLanguageSpecification.doc Page 13 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

AR6 Preferred language ++ + + +++

AR7 Priority ++ + + +++

AR8 Preferred output ++ + + +++

AR9 Paging preferences ++ + + +++

AR10 Get all available data providers + +++ + ++

AR11 Get all available collections + +++ + ++

AR12 Get collections of a given data

provider

+ +++ + ++

AR13 Get fields of a given collection + +++ + ++

AR14 Get type of a given field + +++ + ++

AR15 Get pre-defined values of a given

enumerated type

+ +++ + ++

AR16 Get primary and foreign keys + +++ + ++

Overall Evaluation 66 69 55 83

On the basis of the evaluation matrix presented above, the query language that will

be used in the HarmoSearch project will be based on XML. Due to the flexible nature

of XML (elements and attributes can be created and personalised according to the

needs), this language seems to be the most suitable to implement the complexity of

the HarmoSearch reference model, and in particular the concepts related to the

context of the query. Moreover its extensibility makes it very easy to to add new

elements or attributes in the future, in case additional concepts have to be modelled

or new requirements arise.

File: D_4_1_QueryLanguageSpecification.doc Page 14 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

3 HARMOSEARCH QUERY REFERENCE MODEL

Here below is reported a refined version of the HarmoSearch query reference model

defined in D3.1. This model describes the concepts to allow representing a

Harmonise query in an abstract form. These concepts will be formalised in the next

paragraph, using the chosen XML notation, to produce the HarmoSearch query

language.

Figure 2 HarmoSearch query reference model

For the detailed description of the main concepts refer to D3.1.

File: D_4_1_QueryLanguageSpecification.doc Page 15 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

4 HARMOSEARCH QUERY LANGUAGE

4.1 QUERY LANGUAGE SCHEMA

The following schema describes the HarmoSearch query language syntax.

Figure 3 HarmoSearch query language schema

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema"

elementFormDefault="qualified">

 <xs:element name="QueryRequest">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Priority"/>

 <xs:element ref="Receivers" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element ref="SubDomain"/>

 <xs:element ref="QueryType"/>

 <xs:element ref="Query" maxOccurs="1"/>

 <xs:element ref="Context"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Context">

 <xs:complexType>

 <xs:sequence>

File: D_4_1_QueryLanguageSpecification.doc Page 16 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 <xs:element ref="Sender"/>

 <xs:element ref="Preferences" minOccurs="0"/>

 <xs:element ref="Locations" minOccurs="0"/>

 <xs:element ref="Languages" minOccurs="0"/>

 <xs:element ref="Response"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Sender" type="xs:string"/>

 <xs:element name="Preferences">

 <xs:complexType>

 <xs:annotation>

 <xs:documentation>In order to extend the preferences add new

elements to the sequence.</xs:documentation>

 </xs:annotation>

 <xs:sequence>

 <xs:element ref="Locations" minOccurs="0" maxOccurs="1"/>

 <xs:element ref="Languages" minOccurs="0" maxOccurs="1"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Locations">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Location" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Location" type="xs:string"/>

 <xs:element name="Languages">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Language" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="Language">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="priority" type="xs:int" use="required"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Response">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="OutputFormat"/>

 <xs:element ref="Destination" minOccurs="0"/>

 <xs:element ref="MaxNumberOfResults" minOccurs="0"/>

 <xs:element ref="Sort" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="mode" default="SYNC">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="SYNC"/>

 <xs:enumeration value="ASYNC"/>

 </xs:restriction>

 </xs:simpleType>

File: D_4_1_QueryLanguageSpecification.doc Page 17 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element name="OutputFormat">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Field" minOccurs="0" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="format" default="XML">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="XML"/>

 <xs:enumeration value="HARMO"/>

 <xs:enumeration value="CSV"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:complexType>

 </xs:element>

 <xs:element name="Field">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="as" type="xs:string"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="Destination">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="protocol" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="REST"/>

 <xs:enumeration value="SOAP"/>

 <xs:enumeration value="FTP"/>

 <xs:enumeration value="EMAIL"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="MaxNumberOfResults" type="xs:int"/>

 <xs:element name="Sort">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="OrderBy" maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="OrderBy">

 <xs:complexType>

 <xs:attribute name="order" default="ASC">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="ASC"/>

File: D_4_1_QueryLanguageSpecification.doc Page 18 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 <xs:enumeration value="DESC"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="priority" type="xs:int" use="required"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Priority" default="NORMAL">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="HIGH"/>

 <xs:enumeration value="NORMAL"/>

 <xs:enumeration value="LOW"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Receivers">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Receiver" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="exclusive" type="xs:boolean" default="true"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Receiver" type="xs:string"/>

 <xs:element name="SubDomain" type="xs:string">

 <xs:annotation>

 <xs:documentation>

 Contains a reference to a subdomain described in the

 semantic registry. The following subdomains are standard

 values: "Event", "Accommodation", "Attraction", "Gastro"

 </xs:documentation>

 </xs:annotation>

 </xs:element>

 <xs:element name="QueryType" default="METASEARCH">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="IMPORT"/>

 <xs:enumeration value="METASEARCH"/>

 <xs:enumeration value="RECOMMEND"/>

 <xs:enumeration value="AD-HOC"/>

 <xs:enumeration value="METADATA"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:element>

 <xs:element name="Query">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="SearchCriteria" minOccurs="1"

maxOccurs="unbounded"/>

 </xs:sequence>

 </xs:complexType>

 </xs:element>

 <xs:element name="SearchCriteria">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="EqualsCondition" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element ref="ComparisonCondition" minOccurs="0"

maxOccurs="unbounded"/>

File: D_4_1_QueryLanguageSpecification.doc Page 19 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 <xs:element ref="LikeCondition" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element ref="InRangeCondition" minOccurs="0"

maxOccurs="unbounded"/>

 <xs:element ref="InSetCondition" minOccurs="0"

maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="logicalOperator" default="AND">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="AND"/>

 <xs:enumeration value="OR"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 <xs:attribute name="object" type="xs:string"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="EqualsCondition">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="fieldName" type="xs:string"

use="required"/>

 <xs:attribute name="flexibility" type="xs:boolean"

default="false"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="ComparisonCondition">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:int">

 <xs:attribute name="fieldName" type="xs:string"

use="required"/>

 <xs:attribute name="flexibility" type="xs:boolean"

default="false"/>

 <xs:attribute name="operator" use="required">

 <xs:simpleType>

 <xs:restriction base="xs:string">

 <xs:enumeration value="lt"/>

 <xs:enumeration value="lte"/>

 <xs:enumeration value="gt"/>

 <xs:enumeration value="gte"/>

 <xs:enumeration value="eq"/>

 <xs:enumeration value="diff"/>

 </xs:restriction>

 </xs:simpleType>

 </xs:attribute>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="LikeCondition">

 <xs:complexType>

 <xs:simpleContent>

 <xs:extension base="xs:string">

 <xs:attribute name="fieldName" type="xs:string"

use="required"/>

File: D_4_1_QueryLanguageSpecification.doc Page 20 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 <xs:attribute name="flexibility" type="xs:boolean"

default="false"/>

 </xs:extension>

 </xs:simpleContent>

 </xs:complexType>

 </xs:element>

 <xs:element name="InRangeCondition">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="From" minOccurs="0"/>

 <xs:element ref="To" minOccurs="0"/>

 </xs:sequence>

 <xs:attribute name="fieldName" type="xs:string" use="required"/>

 <xs:attribute name="flexibility" type="xs:boolean"

default="false"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="From" type="xs:date"/>

 <xs:element name="To" type="xs:date"/>

 <xs:element name="InSetCondition">

 <xs:complexType>

 <xs:sequence>

 <xs:element ref="Value" maxOccurs="unbounded"/>

 </xs:sequence>

 <xs:attribute name="fieldName" type="xs:string" use="required"/>

 <xs:attribute name="flexibility" type="xs:boolean"

default="false"/>

 </xs:complexType>

 </xs:element>

 <xs:element name="Value" type="xs:string"/>

</xs:schema>

4.2 QUERY LANGUAGE DESCRIPTION

This section provides a description of the elements and options of the query

language.

4.2.1 QueryRequest

QueryRequest is the root element of the HarmoSearch query. It contains the

priority, the receivers, the domain of reference, the type of query, the context

information and the search criteria. All these sub-elements are detailed in the

following paragraphs.

4.2.2 Priority

The Priority element represents the level of importance of a query request:

requests with low priority could be cheaper than high priority jobs. Possible values

are:

 “HIGH”

 “NORMAL” (default)

 “LOW” Example:

<Priority>NORMAL</Priority>

File: D_4_1_QueryLanguageSpecification.doc Page 21 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

4.2.3 Receivers

If the Receivers element is present, it specifies the data providers whom to

constrain the search to. The exclusive attribute specifies whether the receivers are

optional or mandatory, i.e. if additional relevant providers should be contacted too

(exclusive=”false”) or if only providers from the set should be considered

(exclusive=”true”). Default is “true”. The value of each Receiver element is the

unique ID of the provider within the HarmoSearch environment.

Example:

<Receivers exclusive="true">

 <Receiver>10801</Receiver>

 <Receiver>10802</Receiver>

</Receivers>

4.2.4 SubDomain

The SubDomain element represents the particular domain of the actual request. The

value of such an element is a reference to a description of the used part of the

harmonise ontology. As an example, the data exchanged in the Euromuse network

could contain events, containing an English title and subtitle, an English short and

long description and a number of other data features.

These data descriptions are stored in the Harmonise semantic registry and

referenced when registering a mapping (i.e., a data provider provides data from a

certain part of the harmonise ontology). Furthermore, these references are used

when querying, specifying the relevant part of the Harmonise ontology regarding the

specific query.

Especially in the metasearch scenario, the Harmonise semantic registry then has the

task of reasoning whether the data provided by the data providers matches the data

content desired in the query. This is done through subsumption reasoning on an

OWL description of the specific data formats.

There can be many different (and also equal) data subformats defined, where one

definition (e.g., for the Euromuse use case) does not need to be aware of any other

defined subdomains except for the ones specified in the Harmonise ontology.

As a basic data subdomain the main concepts of the Harmonise ontology are

defined. The semantic of these definitions is “data describing items of the given

subdomain in any depth” and thus may contain insufficient details for practical

purposes.

 “Events”

 “Accommodation”

 “Attractions”

 “Gastro”

Further subdomain specifications can be created (or reused) as required by the

usage scenarios without having to look for the correct inheritance hierarchy or

possibly already existing equivalent specifications. This is covered by the OWL

reasoned of the semantic registry.

Example:

File: D_4_1_QueryLanguageSpecification.doc Page 22 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

<SubDomain>Events</SubDomain>

<SubDomain>Euromuse</SubDomain>

4.2.5 QueryType

The QueryType element denotes the type of request, i.e. the use case which the

query refers to. Possible values are:

 “IMPORT”, which means batch transfer of static data

 “METASEARCH”, which means search for data items across distributed data

sources (default)

 “RECOMMEND”, which means to get recommendations about items related to

a specific topic of interest

 “AD-HOC”, which means sending an ad-hoc query to a number of data

providers

 “METADATA”, which means to query schema and metadata information

Different or additional query types are to be developed by the HarmoSearch

community.

Example:

<QueryType>METASEARCH</QueryType>

4.2.6 Context

The Context element denotes the environment of a query. It contains the sender of

the request, his profile preferences, the geographical area of interest, the preferred

language and how the response should look like. All these sub-elements are detailed

in the following paragraphs.

4.2.7 Sender

The Sender element represents the actor that initiates a query request. Its value is

the unique ID of the provider within the HarmoSearch environment.

Example:

<Sender>10803</Sender>

4.2.8 Preferences

The Preferences element may specify additional preferences which have a

corresponding value in the user profile of the data providers. At the moment the

Preferences field can have a Languages and a Locations element specified. These

options should be seen as being flexible and volatile, thus they can be extended or

restricted as the need arises.

Example:

<Preferences>

 <Locations> ... </Locations>

 <Languages> ... </Languages>

</Preferences>

File: D_4_1_QueryLanguageSpecification.doc Page 23 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

4.2.9 Locations

If it is present, the Locations element specifies the geographical regions for which

the provider claims a special focus. This is not a restriction for the data to be

searched for but for the provider description (e.g. find a provider who specializes in

the Tuscany region and has Italian as a first language). More than one region can be

specified. HarmoSearch query language uses the ISO 3166 two-letter (or „A2‟)

country codes.

Example:

<Locations>

 <Location>Florence</Location>

 <Location>Pisa</Location>

</Locations>

4.2.10 Languages

If it is present, the Languages element specifies the “main” languages of the

provider for the content of the results. This indicates that the content is created

primarily in these languages by native speakers and domain experts. Thus the

quality should be high in comparison to translations by non-experts from a

translation company.

The HarmoSearch query language uses the ISO 639-1 standard: two lower-case

letters represent a language.

Example:

<Languages>

 <Language priority="1">it</Language>

 <Language priority="2">en</Language>

</Languages>

4.2.11 Response

The Response element specifies how the list of result items should look like. It

contains the preferred output, the return address for asynchronous results, paging

and sorting preferences. All these sub-elements are detailed in the following

paragraphs.

The mode attribute specifies whether the search results have to be returned to the

requester synchronously (“SYNC” – default), i.e. all in a bunch after they have been

collected from the data providers, or asynchronously (“ASYNC”), i.e. returning

immediately portion of the results as soon as they become available.

4.2.12 OutputFormat

The OutputFormat element specifies the preferred output format of the response.

The value of the format attribute indicates the output format, e.g.

 “XML”, which means XML based on the requester‟s schema (default)

 “HARMO”, which means XML based on Harmonise ontology (i.e. without

reconciliation)

 “CSV”

File: D_4_1_QueryLanguageSpecification.doc Page 24 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

Different or additional output formats are to be developed by the HarmoSearch

community.

Normally, all fields present in the result data sets are returned. Only if a set of Field

elements are specified, they represent which particular fields should be returned in

the response. Each Field may have an as attribute, whose value – if present -

specifies a different name to be used for the field instead of the default one.

The value of the Field element follows the XPath syntax rules described in the

paragraph “SearchCriteria”, with the object of consideration being the object

specified through the Subdomain field.

If a field is selected which has sub-elements in the Harmonise ontology, then this

indicates that all subelements should be returned.

Example – base object being “Events”:

<OutputFormat format="XML">

 <Field>/eventTitle/mainTitle/languageText/text</Field>

 <Field>/location/address/city/languageText/text</Field>

 <Field>/price/priceRange/max/amount</Field>

</OutputFormat>

4.2.13 Destination

By default search results are sent back to the sender of the query. If the

Destination element is present, it specifies a different way to send the response to

the user who originates the request. The value of the protocol attribute indicates

the communication technology which is used to send the results, e.g.

 “REST”, to send the results to an HTTP service

 “SOAP”, to send the results to a Web Service

 “FTP”, to send the results via FTP

 “EMAIL”, to send the results via email

The value of the Destination element denotes the return address of the response,

i.e. the url of the service or the email address where to send the results.

Different or additional ways to return the response are to be developed by the

HarmoSearch community.

Example:

<Destination protocol="EMAIL">c.prandoni@cpr.it</Destination>

4.2.14 MaxNumberOfResults

The MaxNumberOfResults element – if present - denotes the maximum number of

result items that should be returned.

Example:

<MaxNumberOfResults>500</MaxNumberOfResults>

File: D_4_1_QueryLanguageSpecification.doc Page 25 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

4.2.15 Sort

If it is present, the Sort element specifies the criteria according to which to sort the

search results. It is composed of one or more OrderBy sub-elements representing

the fields to be used for sorting. Each OrderBy element has two attributes:

 order, which can be “ASC” (ascending - default) or “DESC” (descending)

 priority, which says which is the field to be sorted first

The value of the OrderBy element follows the XPath syntax rules described in the

paragraph “SearchCriteria”.

Example – base object being “Events”:

<Sort>

 <OrderBy order="ASC"

priority="1">/price/priceRange/max/amount</OrderBy>

 <OrderBy order="ASC"

priority="2">/eventTitle/mainTitle/languageText/text</OrderBy>

</Sort>

4.2.16 Query

The Query element models the content of a query, with its search conditions. It

contains several, at least one, SearchCriteria element. All these SearchCriteria

elements have to be fulfilled in order to fulfill the query. Therefore, they are

implicitly AND connected.

4.2.17 SearchCriteria

The SearchCriteria element models the different search criteria, i.e. how to

constrain the search for each of the specified fields. It contains one or more

conditions, which are described in detail in the following paragraphs.

If no object is stated, then all paths are considered to be relative to the object

selected in the subdomain field. The descriptions of these subdomains are stored in

the semantic registry. Each subdomain description specifies a restriction on the

elements “Event”, “Accommodation”, “Attraction” and “Gastro”. Therefore, the

corresponding elements of the Harmonise ontology are seen as the root of all path

statements for which no specific object is designated.

If an object is stated explicitly for the SearchCriteria through the object attribute,

then the object has to be specified in the same way. In this case, the fieldname and

object attributes of all subsequent the conditions are relative to the specified

object.

For example, let‟s assume that “Euromuse” is selected as subdomain. “Euromuse” is

specified in the registry to be a kind of “Event” description. Therefore, the path

“/eventTitle/mainTitle/languageText/text” corresponds to “Event/eventTitle/...”

All the condition elements share two common attributes:

 fieldname, whose value is specified using XPath syntax and represents the

feature of the target collection to be constrained. Let X be a collection and x

be any element in this collection. Let Tx = { e1 ,…, ek } be the type of x. To

refer to any feature of x, the corresponding XPath notation would be /X/x/ei

File: D_4_1_QueryLanguageSpecification.doc Page 26 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

(1<=i<=k). For instance the name feature of a Destination in the

DESTINATION collection would be referred by its XPath as:

“/DESTINATION/Destination/name”

 flexibility, which specifies whether the constraint is mandatory

(flexibility=”false” - default) or optional (flexibility=”true”), i.e. it is not

necessary that the search results match these latter criteria but it is a

desiderata

Different search criteria can be combined according to the value of the

logicalOperator attribute:

 “AND” means that the search results have to match all the different

conditions

 “OR” means that the search results have to match at least one of the

different conditions

Example – for a subdomain of type Event the following statement returns all events

which have a maximum price lower than 100 Euros:

<SearchCriteria logicalOperator="AND" object="/price/priceRange/max">

 <EqualsCondition fieldName="/currency"

flexibility="false">EUR</EqualsCondition>

 <ComparisonCondition operator="lte"

fieldName="/amount" flexibility="false">100</ComparisonCondition>

</SearchCriteria>

4.2.18 EqualsCondition

The EqualsCondition element represents a match condition. The value of the

element is the value specified by the user which to constrain the search to.

Example - base object being “Events”:

<EqualsCondition fieldName="/location/address/region/languageText/text"

flexibility="false">Tuscany</EqualsCondition>

4.2.19 ComparisonCondition

The ComparisonCondition element represents a comparison condition. The value of

the element is the value specified by the user. It has an operator attribute, whose

possible values are:

 “lt” representing <

 “lte” representing <=

 “gt” representing >

 “gte” representing >=

 “eq” representing =

 “diff” representing <>

Examples – base object being “Accommodation”:

File: D_4_1_QueryLanguageSpecification.doc Page 27 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

<ComparisonCondition fieldName="/award/awardAchieved"

flexibility="false" operator="gte">3</ComparisonCondition>

4.2.20 LikeCondition

The LikeCondition element represents a partial match condition for symbolic

features. The value of the element is the substring for partial matching. Let

“chosenValue” be the desired substring that the client would like to search for values

of the given feature:

 “chosenValue%” means any value starting with “chosenValue”

 “%chosenValue%” means any value which contains “chosenValue” anywhere

in the value of the feature (default)

 “%chosenValue” means any value ending with “chosenValue”

Example - base object being “Accommodation”:

<LikeCondition fieldName="/name/languageText/text"

flexibility="false">%Best Western%</LikeCondition>

4.2.21 InRangeCondition

The InRangeCondition element represents a date range condition. The content of

the From element is the lower range value and, analogously, the content of the To

element is the upper range value.

Examples - base object being “Events”:

<InRangeCondition fieldName="/timeline/dateRange/startDate"

flexibility="false">

 <To>2011-08-15</To>

</InRangeCondition>

<InRangeCondition fieldName="/timeline/dateRange/endDate"

flexibility="false">

 <From>2011-08-01</From>

</InRangeCondition>

4.2.22 InSetCondition

The InSetCondition element represents a membership condition which allows to

determine whether the value of an expression is equal to any of several values in a

specified list. These values are the values of the Value sub-elements.

Example – base object being “Events”:

<InSetCondition fieldName="/category/value" flexibility="false">

 <Value>modern art</Value>

 <Value>painting</Value>

</InSetCondition>

4.3 EXAMPLE

Here is an example of how a complete query request looks like.

<?xml version="1.0" encoding="UTF-8"?>

File: D_4_1_QueryLanguageSpecification.doc Page 28 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

<QueryRequest>

 <Priority>normal</Priority>

 <Receivers exclusive="true">

 <Receiver>10801</Receiver>

 <Receiver>10802</Receiver>

 </Receivers>

 <SubDomain>Events</SubDomain>

 <QueryType>METASEARCH</QueryType>

 <Query>

 <SearchCriteria logicalOperator="AND"

object="/price/priceRange/max">

 <EqualsCondition fieldName="/currency"

flexibility="false">EUR</EqualsCondition>

 <ComparisonCondition operator="lte"

fieldName="/amount" flexibility="false">100</ComparisonCondition>

</SearchCriteria>

<SearchCriteria logicalOperator="OR"

object="/timeline/dateRange">

 <InRangeCondition fieldName="/startDate"

flexibility="false">

 <To>2011-08-15</To>

 </InRangeCondition>

 <InRangeCondition fieldName="/endDate" flexibility="false">

 <From>2011-08-01</From>

 </InRangeCondition>

</SearchCriteria>

<SearchCriteria logicalOperator="AND">

 <EqualsCondition

fieldName="/location/address/region/languageText/text"

flexibility="false">Tuscany</EqualsCondition>

 <InSetCondition fieldName="/category/value"

flexibility="false">

 <Value>modern art</Value>

 <Value>painting</Value>

 </InSetCondition>

 </SearchCriteria>

</Query>

 <Context>

 <Sender>10803</Sender>

 <Preferences>

 <Locations>

 <Location>Florence</Location>

 <Location>Pisa</Location>

 </Locations>

 <Languages>

 <Language priority="1">it</Language>

 <Language priority="2">en</Language>

 </Languages>

 </Preferences>

File: D_4_1_QueryLanguageSpecification.doc Page 29 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

 <Response>

 <OutputFormat format="XML">

 <Field>/eventTitle/mainTitle/languageText/text</Field>

 <Field>/location/address/city/languageText/text</Field>

 <Field>/price/priceRange/max/amount</Field>

 </OutputFormat>

 <Destination

protocol="EMAIL">c.prandoni@cpr.it</Destination>

 <MaxNumberOfResults>20</MaxNumberOfResults>

 <Sort>

 <OrderBy order="ASC"

priority="1">/price/priceRange/max/amount</OrderBy>

 </Sort>

 </Response>

 </Context>

</QueryRequest>

File: D_4_1_QueryLanguageSpecification.doc Page 30 of 30

FP7-SME-1 262289

HARMOSEARCH

Deliverable D4.1

5 LIST OF FIGURES

Figure 1 XSQuery schema definition .. 11

Figure 2 HarmoSearch query reference model .. 14

Figure 3 HarmoSearch query language schema .. 15

