

FP7-SME-1
Project no. 262289

HARMOSEARCH

Harmonised Semantic Meta-Search in

Distributed Heterogeneous Databases

File: D_2_2_ArchitecturalDesign_final Page 1 of 85

D2.2_final

Architectural Design

Due date of deliverable: 2011-03-31

Actual submission date: 2011-03-31

Start date of project: 2010-12-01 Duration: 24 month

Project funded by the European Commission within the Seventh Framework Programme

Dissemination Level

PU Public X

PP Restricted to other participants (including the Commission Services)

RE Restricted to a group specified by the Consortium (including the Commission Services)

CO Confidential, only for members of the Consortium (including the Commission Services)

File: D_2_2_ArchitecturalDesign_final Page 2 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

PROJECT ACRONYM: HARMOSEARCH

PROJECT CO-ORDINATOR

Company name: [X+O]

Name of representative: Manfred Hackl

Address: Hamburgerstrasse 10/7, A-1050 Vienna, Austria

Phone number: +43-676-842755-100

Fax number: +43-676-842755-599

E-mail: manfred.hackl@xpluso.com

Project WEB site address: www.harmosearch.org

Project Title: Harmonised Semantic Meta-Search in Distributed

Heterogeneous Databases

Grant Agreement: 262289

Starting date: December 2010 Ending date: November 2012

Deliverable Number: D2.2, Final

Title of the Deliverable: Architectural Design

Lead Beneficiary: X+O

Task/WP related to the Deliverable: WP 2, Task 2.4

Type (Internal or Restricted or Public): Public

Author(s): Adriano Venturini, Albert Rainer, Christoph Herzog, Claudio

Prandoni, Alessandro Forti, Federico Galeazzi, Sabine Schneider, Thomas

Motal

Partner(s) Contributing: eCTRL, TU-Wien, CPR

Contractual Date of Delivery to the CEC: March 31, 2011

Actual Date of Delivery to the CEC: March 31, 2011

File: D_2_2_ArchitecturalDesign_final Page 3 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

TABLE OF CONTENTS

1 INTRODUCTION .. 5

1.1 PURPOSE OF THE DOCUMENT .. 5

1.2 DEFINITIONS OF TERMS AND ABBREVIATIONS ... 5

1.3 RELATIONSHIP WITH OTHER DOCUMENTS .. 5

1.4 STRUCTURE OF THE DOCUMENT ... 6

2 LOGICAL VIEW ... 7

2.1 OVERALL DIAGRAM ... 7

2.2 ADMINISTRATION ... 9

2.3 WORKFLOW ..10

2.4 METASEARCH ...10

2.5 SEMANTIC REGISTRY ...11

2.6 MAPPING ..12

2.7 CONNECTOR ..12

2.8 DOMAIN MODEL ...13

3 ACTIVITY DIAGRAMS .. 14

3.1 HARMONISE REGISTRATION AND SETUP ..14

3.2 SERVICE REGISTRATION AND CONFIGURATION ...15

3.3 DATA PUBLISHING ...15

3.4 DATA SUBSCRIPTION ..16

3.5 WORKFLOW DEFINITION ..17

3.6 BOOKABLE ITEMS SEARCH ..18

3.7 RANK AND PAGINATE RESULTS...19

3.8 ITEM RECOMMENDATION ..20

3.9 BATCH TRANSFER OF STATIC DATA ...21

3.10 DATA HOSTING ..23

3.11 DATA DOWNLOAD ...23

3.12 DATA MODIFICATION THROUGH EXTERNAL SERVICES ...24

3.13 SUBMIT AD HOC REQUEST ...25

3.14 EXECUTE INTERVAL REQUEST ..26

3.15 ANALYSE DATA ...27

3.16 MANAGE NOTIFICATIONS ...28

3.17 LOG SYSTEM ACTIVITY ..29

4 SOFTWARE INFRASTRUCTURE .. 31

4.1 PORTAL SERVER ..32

4.2 FRAMEWORK ..32

4.3 WORKFLOW MANAGEMENT ..35

4.4 SEARCH ENGINE ...38

4.5 SCHEDULER ..41

4.6 SEMANTIC REGISTRY ..41

4.7 QUERY LANGUAGE ...43

4.8 LOGGING ...44

4.9 WEB SERVICES ..45

4.10 REPOSITORIES ...46

File: D_2_2_ArchitecturalDesign_final Page 4 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5 COMPONENT VIEW ... 51

5.1 PORTLET COMPONENT VIEW ...51

5.2 SERVICES COMPONENT VIEW ...56

5.3 WORKFLOW ENGINE ..65

5.4 MAPPING TOOL ..75

6 DEVELOPMENT VIEW .. 79

6.1 SVN ..79

6.2 BUILD ...80

6.3 TESTING ..80

6.4 LOGGING ..81

6.5 EXCEPTION HANDLING ...82

7 PHYSICAL VIEW ... 83

8 LIST OF FIGURES .. 85

File: D_2_2_ArchitecturalDesign_final Page 5 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

1 INTRODUCTION

1.1 PURPOSE OF THE DOCUMENT

This document defines the structure of the HarmoSearch system, that is, the main

logical components, the main technologies and how the components will be

developed to support the scenarios and the use cases identified in the Deliverable D

2.1. The document also considers how the existing Harmonise 2.0 technology should

be updated to be able to integrate the new components developed during the

project, such as the semantic registry, the query processor, and the mapping tool.

1.2 DEFINITIONS OF TERMS AND ABBREVIATIONS

Harmonise: name of the existing technological solution. The current version is

Harmonise 2.0, which includes the Harmonise Ontology, Harmonise Service Centre

and the Harmonise Portal.

Harmonise Platform: name identifying the whole set of Harmonise components

Metasearch: one of the major functions to be implemented in this project and the

name of the component which will support it. It provides distributed search

capabilities to the integrated data sources.

Semantic Registry: component to be developed within this project which will

contain semantic profile information about the services available within the

Harmonise networks.

Mapping tool: the mapping tool is a standalone application that supports a user

with little technical knowledge in creating visually the necessary mapping definitions

from the data model of a Harmonise participant to the one of Harmonise and vice-

versa. It consists of a graphical User Interface to show and manipulate mappings, a

pluggable set of algorithms to support automatic mappings, a generator to create

mapping artefacts, and an infrastructure in order to manage a mapping project.

1.3 RELATIONSHIP WITH OTHER DOCUMENTS

Inputs for this document are the D2.1 Use Case Specification deliverable, which

defines the functionalities that the system should support and which external

systems should be integrated, and the architecture document of the existing

Harmonise solution. This document poses the basis for the activities of the following

work packages:

 Semantic concept and ontology (WP3), which defines query and domain

model to be adopted in HarmoSearch;

 Query mapping (WP4), which defines and implements the components

dedicated to the metasearch engine and distributed query processing;

 Semantic registry for metasearch (WP5) which defines and implements the

components dedicated to storing and managing semantic information about

the services participating in the network;

File: D_2_2_ArchitecturalDesign_final Page 6 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Automatic mapping tool (WP6), which will support in a semi-automatic way

the mapping definitions among Harmonise model and the participant content

models.

1.4 STRUCTURE OF THE DOCUMENT

This document follows a typical multiple view architecture description approach.

Each chapter is dedicated to a particular view describing the system according to a

specific perspective:

 Chapter 2, Logical View, provides a structured view of the main logical

component of the system, without considering a specific technology but

providing an insight about which are the main logical modules which have

been identified to support the defined use cases.

 Chapter 3, Activity View, provides a dynamic view, showing how the

components identified in the logical view can support the major use cases

identified in the Deliverable D2.1.

 Chapter 4, Software Infrastructure, provides an overview of the main

technologies which will be used as foundation for the components which will

compose the system.

 Chapter 5 Component View, defines the software components which will be

developed, their roles and dependencies, and how they communicate through

a set of well identified interfaces.

 Chapter 6, Development View, defines the development tools which will be

adopted for the development and some issues common to all modules like

error management, log management and testing process.

 Chapter 7, Physical View, shows how the system could be deployed on the

network environment and discusses possible solutions according to the level

of availability and workload which should be supported.

File: D_2_2_ArchitecturalDesign_final Page 7 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

2 LOGICAL VIEW

This section provides an overview of the system from the logical point of view. The

focus is on the main logical components of the system, their roles and how they are

related, but without considering how they will be technically implemented, thus

without considering the specific technologies that will be adopted. The goal is to

identify the components which can support the use cases defined in the deliverable

D2.1.

2.1 OVERALL DIAGRAM

The diagram in Figure 1 shows the components that have been identified to support

the scenarios and use cases of the HarmoSearch system.

The system is structured in the following major subsystems:

 Core Components. The core of the system, the components dedicated to

implement the business logic.

 Core Services. Core services implemented using the core components as

identified in the deliverable D.2.1.

 External Services. Services which the platform will be able to provide by

integrating services provided by third parties. They are the one identified in

the deliverable D.2.1.

 External Components. Components provided by third parties which can be

used by the platform to provide the external services.

The components in the diagram are coloured in red if they are new components.

Existing components, which will be used by the new components, are shown in

yellow.

File: D_2_2_ArchitecturalDesign_final Page 8 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Figure 1 Logical View

File: D_2_2_ArchitecturalDesign_final Page 9 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The Core Services and External services components support the use cases and

scenarios already described in the deliverable D.2.1. Core services are exactly the

ones identified in D2.1, external services are grouped together: Data Analysis

includes the Market Intelligence use cases (―Submit Ad Hoc Request‖, ―Execute

Interval Request‖, ―Analyse Data‖ and ―Manage Notifications‖), Data Modification

includes the Data modification use cases (―Data Cleansing‖, ―Decision Support‖,

―Data Enrichment‖ and ―Data Translation‖), Data Hosting includes ―Data Download‖.

―Negotiation‖ and ―Payment‖ use cases are not covered in this document because

they have been identified as out of the scope.

The rest of this section focuses on the core components, which define the major

building blocks of the system. They have been grouped into six logical areas

according to the functionality they provide: Administration Components (coloured in

pink), Workflow Components (bright green), Mapping Components (light blue),

Connector Components (grey), Metasearch Components (orange) and Semantic

Registry Components (light green).

2.2 ADMINISTRATION

The Administration component subsumes functionality related to administrative

issues regarding the definition and creation of user profiles and access policies and

the observation and registration of relevant system activities. The Administration

component is sub-divided into three sub-components: User Manager, Access Control,

and Log Manager.

The main task of the User Manager component is to provide a general access point

for registering organisations and users and for managing the profile of a Harmonise

participant. Managing in this context means that the participant is able to add, edit,

or remove certain information from his profile, like alerts, filters, subscriptions, data

profiles, etc.

The Access Control component is used to define specific access control policies to

restrict access to certain services. Access control policies operate on the data as well

as on the user level. In other words, a service provider can specify which data

should be available and who should have access to this data and under which

conditions. The Access Control component is of interest to multiple scenarios. For

example, restricting the access on certain data is of high importance for the

bookable item search scenario, where Harmonise participants are able to query data

items offered by different data providers.

The Log Manager component is in charge of logging relevant meta-information

reflecting the behaviour of the Harmonise system. This is achieved by observing

specific types of system activities that are either triggered or performed by

Harmonise participants. The activities a Harmonise participant may perform are

manifold. Thus, the monitoring mechanism of the Log Manager component is kept

very general in order to allow a flexible observation of certain system activities. A

good example for a user-driven activity is a search request among different service

providers. In such a case, the query request will be analysed and the representative

meta-data (e.g. which type of information has been queried among which partners

by whom) will be extracted and stored. The Log Manager is of special interest to

many components of the Harmonise system for example to the business intelligence

scenarios (see D2.1) where the gathered system information will be used for

File: D_2_2_ArchitecturalDesign_final Page 10 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

analytical and statistical purposes. It provides a common interface to access and

store log data.

2.3 WORKFLOW

The workflow component is in charge of orchestrating the processes described in the

scenarios supported by HarmoSearch. A process is a controlled execution of specific

services among the ones available as core services of the platform or as external

integrated services. Example of processes are the ―data transfer‖ process, which

allows a data provider to push data to a given consumer, or the ―metasearch‖

process, where a Harmonise participant can query distributed and heterogeneous

data sources. More complex processes can be defined too, which chain together

different services, like searching and getting ranked or translated results. Processes

can be defined in a flexible way, by exploiting a specific process definition language.

The Workflow component is sub-divided into six sub-components: Workflow Engine,

Workflow Definition, Workflow Storage, Notification Manager, Reconciliation Engine

and Scheduler.

The Workflow Definition component provides the necessary tools for supporting the

process definition task. The defined processes are stored by the Workflow Storage

component.

The Workflow Engine executes specific process instances. When another component

needs to execute a certain process, it asks the Workflow Engine to start an instance

of a given process definition. The Workflow Engine executes the steps described in

the process definition, by calling the involved services. Among services which could

be invoked, an important role is played by the Reconciliation Engine. The

Reconciliation Engine’s role is to transform data and queries among different data

formats, to enable the key feature of Harmonise which is to allow participants to

participate into the network and exchange data without changing their data model.

Thus the Reconciliation Engine is invoked by the Workflow Engine when a query or

an instance data needs to be transformed.

The Scheduler is in charge of automatically executing specific workflow processes at

defined interval times. It is highly configurable to allow defining when specific

workflow processes should be automatically started.

Finally the Notification Manager monitors the system to discover when a specific

process should be started. For example, it is used for supporting the publishing and

subscription scenario, where specific data consumers want to be notified or to

receive data they are interested in as soon as they are published to the network. In

such case, the notification manager may trigger the execution of the process which

allows getting data from a service provider and sending them to the subscriber.

2.4 METASEARCH

The aim of the metasearch component is to enable searches across different

individual search components of heterogeneous websites and aggregate the results

in a unified list. Partners will use this functionality to search heterogeneous data

sources using a uniform interface and a consistent query language. The Metasearch

component is sub-divided into four sub-components: Query Processor, Result Cache,

Local Search Engine and Crawler.

File: D_2_2_ArchitecturalDesign_final Page 11 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The conducer of the metasearch process is the Workflow Engine (Workflow

component): it receives the search query, controls access rights through the Access

Control (Administration component), looks up the Semantic Registry (Semantic

component) to find appropriate data providers and calls the Query Processor to

perform the query and aggregate the results to be sent to the participant who

performed the query.

Content available to be queried in the Harmonise network can reside in external

repositories or can be stored internally on a local repository which indexes external

content. The task of the Query Processor is therefore both to look up the internal

repository through the Local Search Engine, and to forward the query to the external

data providers, aggregating results coming both from the local db and from external

data sources. Moreover, in order to allow searching data in a network of data bases,

not only data but also queries need to be transformed. Thus, similar to translating

data on the fly, the search or query string also needs to be transformed. The Query

Processor has the responsibility to take care of this, making use, if necessary, of the

Reconciliation Engine (Workflow component).

The Crawler is the component which is in charge of browsing web pages to fetch and

index external content. Visited pages are indexed and stored in an internal

repository using the Local Search Engine.

Finally, the Result Cache allows storing temporarily search results in order to be

further elaborated: filtered, sorted, paginated, etc.

2.5 SEMANTIC REGISTRY

The semantic registry deals with describing on a metadata level what actual

information or services are provided by the different Harmonise participants.

Therefore, the semantic registry has two main sub-components, the Data Registry

and the Service Registry.

The Data Registry is responsible for capturing information about the content

provided by data providers. This is done by storing metadata describing the content

and associating it to the respective data providers. There are several ways this data

can be acquired or updated. First and most important is the active definition of the

provided data, either when setting up the participant’s account or later on when

updating the meta-information. This is done manually through a user interface

provided on the Harmonise platform. The process can be aided by analysing the

provided mapping, which gives a basic indication of the provided content. The other

important source of metadata information is a direct (automatic) update of the

meta-information through a web-service call by the data provider. This is especially

useful in order to notify other participants on the Harmonise network of new or

different data being available. Apart from data providers, data consumers can also

express their interest in certain data items in a similar way.

The main task of the Data Registry is to be able to find HarmoSearch participants

associated to specific data. One use of this association is to identify topics of interest

for HarmoSearch participants in a notification scenario. The main use case, however,

is to identify data providers who have content that can possibly satisfy a given

search query. Therefore, there exists a close association between the whole

metasearch process and the Data Registry.

File: D_2_2_ArchitecturalDesign_final Page 12 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The Service Registry has the primary function to describe the external services

offered by Harmonise participants. The service itself and its basic effects are

described at the time of service registration. At this point the service provider makes

the service and its technical implementation known to the Harmonise system. A user

interface integrated into the Harmonise platform is used for registering the service.

Furthermore, a specialised user interface allows Harmonise participants to discover

these services and apply them to specific workflows (see 2.3, ―Workflow‖).

2.6 MAPPING

The mapping component is responsible for the harmonisation of heterogeneous data

and consists of two main parts - the Mapping Tool and the Mapping Store. The

Mapping Tool is used at design time to create the necessary harmonisation artefacts

and stores these artefacts at the Mapping Store. The Reconciliation Engine

(Workflow component) then accesses the Mapping Store at run time in order to fetch

suitable artefacts for a particular request.

The Mapping Tool is a stand-alone application and has no dependency to the

Harmonise platform. In principle, it can be deployed in any harmonisation project.

Mapping artefacts are created using a propose-critique-modify approach, i.e., a

mixture of automatic matching and user interaction. The tool makes a matching

proposal and presents this proposal to the user. The user then supervises the

proposal and accepts or rejects it partially or completely, optionally asking for a new

proposal. Alternatively, the user may manually manipulate proposals in cases the

employed matching algorithms do not come up with a correct solution. Finally, from

the defined matches the tool creates a mapping artefact that can then be uploaded

to the Mapping Store.

The Mapping Store is in effect a general data storage component with predefined

access functions that allow to store and retrieve mapping artefacts. In addition, it

provides functions to manage the lifecycle and access rights of artefacts. Lifecycle

management includes activation and deactivation of artefacts as well as version

control, removal, and replacement. Access right management includes controlling

read and write access for users, roles, and groups and is delegated to the Access

Control Component from the Administration Component.

2.7 CONNECTOR

The Connector component is used to define a homogeneous interface for exchanging

data between Harmonise participants and for invoking external services. The

Harmonise participants can send or receive data to or from other Harmonise

participants via mailboxes or through a service they can provide (e.g. a rest call or a

web service). They may either simply query data from the Harmonise network or use

an external service to get the results ranked or translated. In both cases it is

necessary to provide a common interface. Thus, the Connector component is

subdivided into two additional sub-components: the Data Connector and the Service

Connector. Both act as a proxy to the system.

The main goal of the Data Connector is to abstract the participants, by providing a

homogenous interface to all the partners of the network, allowing them to exchange

data and to be queried by other participants.

File: D_2_2_ArchitecturalDesign_final Page 13 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The Service Connector is used to allow interactions with external services that are

not core components of the Harmonise system, e.g. to rank or modify data or to

select items to be recommended.

2.8 DOMAIN MODEL

One typical section of the logical view in the architectural document is the domain

model. The domain model will be described extensively in the deliverables D3.1,

D3.2 and D3.3 of WP 3, thus we forward to them for its definition.

Kommentar [DF1]: External
component are not described. Is that
normal? Also, CIore services and
External services are defined in the
D2.1 document, but do not necessarily
have the same name as the one used
in the diagram. It is therefore not very
easy to understand what they
correspond to. THe number of items do
not correspond either. If we cannot/do
not want to undate D2.1, would could
possibly map the services to the
previous definitions.

Kommentar [CP2]: External
components are not described because
they are not part of the platform. They
are provided by external service
providers and the platform enables the
possibility top lug them in in order to
fulfill external services.
Concerning naming of services: core
services are exactly the same as D2.1,
external services are grouped together
a bit, anyway I added one sentence
explaining this below the figure.
Negotiation and Payment are not
covered in this document because they
have been identified as out of the
scope.

File: D_2_2_ArchitecturalDesign_final Page 14 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

3 ACTIVITY DIAGRAMS

This section shows activity diagrams involving the components. The use cases

described in D2.1 are used as starting points for defining the activity diagrams in

this chapter and analyse how they are supported considering the identified

components.

Note that the activities described in this chapter do not exhaustively cover

everything that will be possible in the Harmonise system but are a summary of the

identified use cases. Therefore, the selected diagrams should cover a large enough

range of possible activities to identify all relevant components, their functions and

important data items. All other possible activities in the Harmonise system are seen

as variations or combinations of the ones presented here, configured through

individual workflows (see section 5.3 ‖workflow engine‖).

In the activity diagrams the following graphical notation is used:

Activity

(the focus of the diagrams)

Involved data

item

Involved

software component

3.1 HARMONISE REGISTRATION AND SETUP

Overview:

A Harmonise participants registers on the Harmonise platform and configures the

data flow.

Use Cases which the diagram refer to:

MS-1 ―Harmonise Registration and Setup‖, IMPORT-1 ―Harmonise Registration and

Setup‖.

Activity Diagram:

Before being able to restrict access rights or queries to specific partners, these

partners obviously have to be registered (if not fully configured) on the Harmonise

platform.

The creation of mappings is outside the actual Harmonise system and therefore not

considered in the activity diagrams. It is expected that the mappings have been

created before registering.

Semantic Registry: is the major component concerned with registering all data

providing or external services. It has two main parts:

Data Registry: deals with the description of what data a data provider can

deliver. It is used to register and discover data providers and to find

appropriate data providers for querying.

Service Registry: deals with the description of external services. These

services take Harmonise data as input, apply operations (data enrichment,

filtering, etc.) on the data and return the modified result set. The service

registry deals with describing and discovering these services for being used in

a query workflow.

File: D_2_2_ArchitecturalDesign_final Page 15 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Register on Harmonise

platform

Set up Harmonise account

(participant info)

Upload mapping(s)

Specify query capabilities

(esp. what data is available)

Participant

configuration

Harmonise user

manager

Data provider Querying participant

Specify access rights

(who can search what)

Specify query workflow

See activity diagram

„Workflow Definition"

Harmonise

mapping(s)

Query

configuration
Query

configuration
Query workflow

Semantic Registry

Mapping Store

Data Registry

Access Control

3.2 SERVICE REGISTRATION AND CONFIGURATION

Overview:

A Harmonise service provider registers his external service on the Harmonise

platform and configures the service.

Use Cases which the diagram refer to:

MS-1 ―Harmonise Registration and Setup‖, IMPORT-1 ―Harmonise Registration and

Setup‖.

Activity Diagram:

Before being able to restrict access rights to specific partners, these partners

obviously have to be registered (if not fully configured) on the Harmonise platform.

Service registry

Register service
Service

description

Register on Harmonise

platform

Set up Harmonise account

(participant info)

Participant

configuration

Harmonise user

manager

Configure service

access rights

Service connectors
Configure service

connectors

Service

configuration

Access control

3.3 DATA PUBLISHING

Overview:

File: D_2_2_ArchitecturalDesign_final Page 16 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The goal of these use cases is to allow data providers to publish once or on a regular

basis their data in the Harmonise network, storing some meta-data which are useful

to describe what kind of data they have to offer. Data providers can then manually

or automatically associate additional information to their data linking them together

and creating data profiles to be used to facilitate subscription.

Use Cases which the diagram refer to:

PS-2 ―Data Publishing‖, PS-3 ―Data Enrichment‖, PS-4 ―Consumer Association‖.

Activity Diagram:

Regarding data objects, format (SR-H) denotes the format of the Harmonise

ontology for the Semantic Registry component. This activity diagram provides

requirements for this ontology too.

Register dataSemantic registry
Data registry

record (SR-H)

Specify access rights

Add additional information

Associate

tags/annotations to data

Extract tags from

content/mapping

manually automatically

Data registry

Access control
Access control

policy

3.4 DATA SUBSCRIPTION

Overview:

The goal of these use cases is to allow consumers to subscribe to data profiles in

order to be notified if new data are available which may be of interest for them.

Use Cases which the diagram refer to:

PS-6 ―Data Subscription‖, PS-7 ―Alert Definition‖.

Activity Diagram:

Regarding data objects, format (SR-H) denotes the format of the Harmonise

ontology for the Semantic Registry component. This activity diagram provides

requirements for this ontology too.

File: D_2_2_ArchitecturalDesign_final Page 17 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Associate data profile

to user

Create alert

Semantic registry

Notification manager

Alert

User 1..n

Send notification

Invoke service to

send data

Receive new data / updates

Find users

associated to data

Notification manager

Semantic registry

Data registry

Workflow engine

Data registry

record (SR-H)

Alert

Data registry

3.5 WORKFLOW DEFINITION

Overview:

The goal of this use case is to allow users to set up a complex service or a service

flow by chaining different services together. Example of services are booking, items

recommendation, ranking, filtering, data translation, data modification, data hosting,

statistical and market analyses, etc.

Use Cases which the diagram refer to:

MS-1 ―Harmonise Registration and Setup‖, IMPORT-1 ―Harmonise Registration and

Setup‖.

Activity Diagram:

The activity diagram shows as an example of service flow the configuration of a

query. A query flow can chain together different services, e.g. data modification

services like filtering, ranking, cleansing, translating, etc.

Workflows can be scheduled to run when a given trigger occurs.

File: D_2_2_ArchitecturalDesign_final Page 18 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Specify whom to query
Participant

configuration
Service registry

Find data modification

services to use

Service 1..n

Check access rights

Add service to workflow

Save workflow

Access control

policy

Workflow

Access control

Workflow designer

Workflow storage

Scheduled job
Schedule workflow

execution
Scheduler

3.6 BOOKABLE ITEMS SEARCH

Overview:

The goal of the use case is to allow a harmonise participant (e.g., a tourism portal)

to search for ―live‖ (e.g., bookable) data items offered by specific data providers.

The data is required to be up to date (e.g., availability information and price quotes).

ontology. Please note that this type of search supports an asynchronous mechanism,

assuming that some bookable data providers could provide results with different

response time. This allows to send data to the receiver as data become available.

Use Cases which the diagram refer to:

MS-2 ―Bookable Item Search‖.

Activity Diagram:

Regarding data objects, format (A) denotes the local format of the querying

participant; (B[i]) the different formats of the data providers, namely the format of

the ith data provider; (H) the format of the Harmonise

File: D_2_2_ArchitecturalDesign_final Page 19 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Provider 1..n

Access control

Semantic Registry

Search query

connector

Reconciliation engine

Mapping store

Query processor

Metasearch engine

Receive search query

Check access rights

Translate query

A to H

Find appropriate

data providers

Translate result

H to A

Send result asynchronous

Send query to provider

Translate query

Receive result

from provider

Translate result

B[i] to H

Input query

(A)

Participant

configuration

Harmonise

query (B)

Provider query

(B[i])

Provider result

(B[i])

Harmonise

result (H)

Output result

(A)

Query

configuration

3.7 RANK AND PAGINATE RESULTS

Overview:

After a search has been conducted, the querying harmonise participant retrieves a

specific view of the results, i.e., sorted and paginated (e.g., results 21-30). Possible

other filters work likewise.

Use Cases which the diagram refer to:

MS-2 ―Bookable Item Search‖.

Activity Diagram:

File: D_2_2_ArchitecturalDesign_final Page 20 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Process result query

Translate result

H to A

Sort cached results

Return filtered, paginated,

sorted output results

Paginate sorted results

Access control

Semantic Registry

Data connector

Reconciliation engine

Mapping store

Query processor

Metasearch engine

Receive search query

Check access rights

Translate query

A to H

Find appropriate

data providers

Accumulate results

Cache search result

Input query

(A)

Participant

configuration

Harmonise

query (B)

Provider query

(B[i])

Provider result

(B[i])

Harmonise

result (H)

Output result

(H)

Result cache

Provider 1..n

Send query to provider

Translate query

Receive result

from provider

Translate result

B[i] to H

External Service:

Ranking

Output result

(A)

Results query

(pagination, etc.)

Query

configuration

3.8 ITEM RECOMMENDATION

Overview:

A harmonise participants wants to get recommendations for a specific user about

File: D_2_2_ArchitecturalDesign_final Page 21 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

items related to a specific topic of interest. The harmonise participant provides

contextual information (for example geo-coordinates or specific theme of interest),

some constraints and receives backs items best fitting the provided information.

Use Cases which the diagram refer to:

MS-3 ―Item Recommendation‖.

Activity Diagram:

Provider 1..n

Search selected

providers

Access control

Semantic Registry

Data connector

Reconciliation engine

Metasearch engine

Receive recommendation

request

Input query

(A)

Check access rights

Select providers

for search

Receive user profile

Transform result

H to R

Select

recommendations

Transform results

H to A

Return results

Identify recommendations

in harmonise results

User Profile

Participant

configuration

Search query

(R)

Search result

(R)

Search result

(H)

Transform query

R to H

Search query

(H)

Recommen-

dations (R)

Recommen-

dations (H)

Recommen-

dations (A)

External Service:

Recommender

Mapping store

3.9 BATCH TRANSFER OF STATIC DATA

Overview:

The goal of the use case is to transfer static information (e.g. in case of

File: D_2_2_ArchitecturalDesign_final Page 22 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

accommodation: accommodation name, description, location, pictures, amenities,

etc.) from data providers.

Use Cases which the diagram refer to:

IMPORT-2 ―Batch transfer of static data‖.

Activity Diagram:

Note that delta updates are simply specific queries causing specific results.

Therefore this extension is not reflected in the activity diagram.

Access control

Semantic Registry

Data connector

Reconciliation engine

Mapping store

Query processor

Metasearch engine

Receive search query

Check access rights

Translate query

A to H

Find appropriate

data providers

Accumulate results

Translate result

H to A

Send result

Provider 1..n

Send query to provider

Translate query

Receive result

from provider

Translate result

B[i] to H

Input query

(A)

Participant

configuration

Harmonise

query (B)

Provider query

(B[i])

Provider result

(B[i])

Harmonise

result (H)

Output result

(A)

Query

configuration

File: D_2_2_ArchitecturalDesign_final Page 23 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

3.10 DATA HOSTING

Overview:

The goal of this use case is to allow data providers to upload once or on a regular

basis their data in the Harmonise portal.

Use Cases which the diagram refer to:

PS-1 ―Data Hosting‖.

Activity Diagram:

Regarding data objects, format (A) denotes the local format of the data provider;

(H) the format of the Harmonise ontology. The Content Manager could act also as a

cache for other content providers.

Configure scheduled jobScheduler
Data upload

job

Invoke service to get data

Receive data

Translate data

A to H

Store data

Data connector

Reconciliation engine

Mapping store

External service:

Content manager

Participant

configuration

Input data

(A)

Participant

mapping

Harmonise data

(H)

3.11 DATA DOWNLOAD

Overview:

The goal of this use case is to allow consumers to download data pushed by data

providers once or regularly.

Use Cases which the diagram refer to:

PS-5 ―Data Download‖.

Activity Diagram:

Regarding data objects, format (A) denotes the local format of the data consumer;

(B[i]) the different formats of the data providers, namely the format of the ith data

provider; (H) the format of the Harmonise ontology.

File: D_2_2_ArchitecturalDesign_final Page 24 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Check access rights
Access control

policy
Access control

Provider 1..n

Get data from provider

Translate data

B[i] to H

Check filters

Translate data

H to A

Harmonise

result (H)

Output result

(A)

Data connector

Workflow engine

Package data

Send data

Provider data

(B[i])

Harmonise data

(H)

Participant

mapping

Participant

configuration

Reconciliation engine

Mapping store

3.12 DATA MODIFICATION THROUGH EXTERNAL SERVICES

Overview:

After a search, the configured data modifying services for the search query are

invoked. These data modification services process the search result in Harmonise

format and finally return the processed results in the user’s format.

Note that this use case deals with the actual execution of a configured workflow

(search and data modification services).

Use Cases which the diagram refer to:

DM-3 ―Data Cleansing‖, DM-4 ―Decision support‖, DM-5 ―Data Enrichment‖, DM-6

―Data Translation‖.

Activity Diagram:

Regarding data objects, format (A) denotes the local format of the querying

participant; (H) the format of the Harmonise ontology.

―Find and query data providers‖ can be any of the previously outlined search flows.

File: D_2_2_ArchitecturalDesign_final Page 25 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Data connector Receive search query

Service

configuration

Find and query

data providers

Look up configured

workflows

For each service in workflow

Send intermediate results

to next service

Receive processed results

from service

Translate result

H to A

Return output result

Participant

configuration

Query workflow

Search result

(H)

Processed result

(H)

Output result

(A)

Check service

access rights

Search query

(A)

Service connector

Service registry

Semantic registry

Workflow Engine

Reconciliation engine

Mapping store

Workflow Storage

3.13 SUBMIT AD HOC REQUEST

Overview:

A Service Consumer/Service Provider is able to submit an ad-hoc search query

collecting filtered data about accommodations and events used for analytical

processing of market information conducted by a Market Analyser.

Use Cases which the diagram refer to:

MI-1 ―Submit ad hoc request‖.

Activity Diagram:

Regarding data objects, the input query corresponds to the initial search query

specified by the user. The Analysis configuration corresponds to user specific

requirements (e.g. data format (output), statistical methods, etc.).

File: D_2_2_ArchitecturalDesign_final Page 26 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Specify input query

Input Query

Save query to user profile

User Profile
save query

Execute search request

Receive search result

Search Result

Service Provider Query

Submit search result to external

service provider

Receive data analysis

Service Provider Result

Analysis Data

Find potential service provider

Check service offer

Analysis Configuration
Accumulate final provider result

Query analysis service provider

Query Processor

Metasearch Engine

User Management

Access Control

External Service: Analyse Data

Semantic Registry

External Service: Service Selector

This diagram represents a simple scenario, with no integration from multiple data

sources. But it will be possible to compose more complex scenarios by chaining the

activity diagrams described in the previous chapters (i.e. activity diagram at

paragraph 3.7).

3.14 EXECUTE INTERVAL REQUEST

Overview:

A Service Consumer/Service Provider is able to create a new or modify an existing

search interval submitting a specific search query to the Harmonise system.

Use Cases which the diagram refer to:

MI-2 ―Execute interval request‖.

Activity Diagram:

An interval configuration includes all necessary information for executing an interval

request (e.g. input query, data and time options, etc.).

File: D_2_2_ArchitecturalDesign_final Page 27 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Input Query

Intervall

Config

Scheduler

User Manager

Access Control Create new intervall

Define intervall settings

Execute ad-hoc request

3.15 ANALYSE DATA

Overview:

The Harmonise system enables a Harmonise Statistician to gather and analyse log

data statistically.

Use Cases which the diagram refer to:

MI-3 ―Analyse data‖.

Activity Diagram:

Regarding data objects: Log data (T) refers to initial data as captured by the system

with no specific format. Depending on the service provider who conducts the final

analysis it may be necessary to transform the log-data to a specific format (Log Data

(P)).

File: D_2_2_ArchitecturalDesign_final Page 28 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Gather target log data

Search and determine service

provider

Submit log data to service

provider

Perform statistical analysis

Visualise results

User Profile

External Component: Status Cockpit

Result Set

(A)

External Service: Analyse Data

External Service: Interpretation Module

Access Status Cockpit

Log Manager

Metasearch

Engine
Prepare log data

Log Data

(P)

Log Data

(T)
Data Connector

3.16 MANAGE NOTIFICATIONS

Overview:

The Harmonise Statistician/Harmonise Administrator should be able to monitor

certain events and activities within the Harmonise system. Thus this activity diagram

shows how the administrator can define and manage notification rules which allows

members of the network to receive notifications about specific events when they

happen.

Use Cases which the diagram refer to:

MI-4 ―Manage Notifications‖.

Activity Diagram:

The status cockpit in this activity description serves as the ―overall‖ management

instance managing the orchestration of the different tasks.

Regarding data objects, an activity profile corresponds with the activities a user

wants to monitor, respectively informed in case of a specific event (e.g. data

change, state change of an activity, etc.). A member profile allows the

statistician/administrator to add an arbitrary number of participants which may be

additionally informed in case of a specific event.

File: D_2_2_ArchitecturalDesign_final Page 29 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Notification

Settings

Access Status Cockpit

Check permissionsAccess Control

Load assigned/available

activities

Set notification options

Select activity

Load member list

Authorize members

User Profile

Notification

Settings

Notification Manager

Profile Manager

Consumer Association

3.17 LOG SYSTEM ACTIVITY

Overview:

The Harmonise system shall be able to log certain activities conducted by Harmonise

Participants. The collected data serves thereby as a basis for system-specific

analyses.

Use Cases which the diagram refer to:

MI-5 ―Log System Activity‖.

Activity Diagram:

System activity is the general description of observable operations executed by the

system or a user. Candidates for such operations may be: search request, payment

transaction, service request, etc.; In general one may distinguish long-term and

short-term activities. Depending on the type an activity may have several states that

can be adopted by the activity (e.g. pre-transaction phase or post-transaction

phase); Depending on the type it may be useful to save the log-data (activity meta-

data) in a specific format and to multiple/single target logs, in regard to context and

further use (e.g. text mining, process minding); Log Target Destination refers to an

abstract and general description of possible target log techniques such as databases

or log-files, etc.

File: D_2_2_ArchitecturalDesign_final Page 30 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Recognize system activity

System ActivityEvaluate activity type

Check activity state

Extract log-able meta-data

Transform to log format

Locate log file

Write log data to target

destination

Log Data

Log Target

Destination

Activity Observer

Log Manager

Log-Format Processor

Data Connector

File: D_2_2_ArchitecturalDesign_final Page 31 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

4 SOFTWARE INFRASTRUCTURE

This chapter introduces the major infrastructural software components which may be

used for the implementation of the modules needed to set up the Harmonise

integrated platform.

Since this platform will be based on the existing Harmonise solution, some of the

components will be reused as they are or adapted to the new HarmoSearch needs.

For instance the web portal will be again based on Liferay Portal Server.

On the other hand, for the new HarmoSearch specific components (i.e. Metasearch,

Mapping Tool, Semantic Registry, Workflow Engine), a state of the art of the

technologies which have been taken in consideration as possible candidates to be

used for the implementation is presented. The final choice will be taken in the

specific design phase (see deliverables D3.1 ―Ontology for the query model‖, D3.2

―Ontology for the registry model‖, D4.1 ―Semantic query – Query language

specification‖, D5.1 ―Registry Requirements analysis‖).

The following figure presents an overview of the software infrastructure. As usual,

completely new software components are displayed in red while existing ones are

displayed in yellow.

Figure 2 Infrastructural View

File: D_2_2_ArchitecturalDesign_final Page 32 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

4.1 PORTAL SERVER

4.1.1 Liferay

Liferay is the leading open source portal service available today. The existing

Harmonise system adopted Liferay as the basic infrastructure and integration

platform as well as for providing its services through the web.

Liferay is characterized by the following features:

 JSR 168 and JSR 286 compliant. These are the portlet specification which

have been standardized by a group of companies including Oracle, Bea, and

Sun, whose goal is to define a common and interchangeable infrastructure

for developing portal based solution. A portlet is a specific component of a

web application which could have a Graphical User Interface and integrate on

a web page by communicating with the other portlets. This standard allows

defining web components which could be deployed on portal servers

provided by different vendors.

 User Management. Liferay provides a rich way to manage users,

organizations, communities, to define their roles and permissions. So it is

exploited for supporting the HarmoSearch user management needs.

 Theme Management. Specific user interface layouts can be built. This is

useful to be able to support different communities and groups within

HarmoSearch.

 Social Components, like wiki, forums, and blogs. This will be used to build

the HarmoSearch knowledge base and share it among the members.

4.2 FRAMEWORK

4.2.1 Spring

The Spring Framework is an open source application framework for the Java

platform.

The first version was written by Rod Johnson who released the framework with the

publication of his book Expert One-on-One J2EE Design and Development in October

2002. The framework was first released under the Apache 2.0 license in June 2003.

The first milestone release, 1.0, was released in March 2004, with further milestone

releases in September 2004 and March 2005. The Spring 1.2.6 framework won a Jolt

productivity award and a JAX Innovation Award in 2006. Spring 2.0 was released in

October 2006, and Spring 2.5 in November 2007. In December 2009 version 3.0 GA

was released. The current version is 3.0.5.

The core features of the Spring Framework can be used by any Java application, but

there are extensions for building web applications on top of the Java EE platform.

Although the Spring Framework does not impose any specific programming model, it

has become popular in the Java community as an alternative to, replacement for, or

even addition to the Enterprise JavaBean (EJB) model.

The Spring Framework comprises several modules that provide a range of services:

File: D_2_2_ArchitecturalDesign_final Page 33 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Inversion of Control container: configuration of application components and

lifecycle management of Java objects

 Aspect-oriented programming: enables implementation of cross-cutting

routines

 Data access: working with relational database management systems on the

Java platform using JDBC and object-relational mapping tools

 Transaction management: unifies several transaction management APIs and

coordinates transactions for Java objects

 Model-view-controller: an HTTP and Servlet-based framework providing hooks

for extension and customization

 Remote Access framework: configurative RPC-style export and import of Java

objects over networks supporting RMI, CORBA and HTTP-based protocols

including web services (SOAP)

 Convention-over-configuration: a rapid application development solution for

Spring-based enterprise applications is offered in the Spring Roo module

 Batch processing: a framework for high-volume processing featuring reusable

functions including logging/tracing, transaction management, job processing

statistics, job restart, skip, and resource management

 Authentication and authorization: configurable security processes that

support a range of standards, protocols, tools and practices via the Spring

Security sub-project (formerly Acegi Security System for Spring).

 Remote Management: configurative exposure and management of Java

objects for local or remote configuration via JMX

 Messaging: configurative registration of message listener objects for

transparent message consumption from message queues via JMS,

improvement of message sending over standard JMS APIs

 Testing: support classes for writing unit tests and integration tests

Central to the Spring Framework is its Inversion of Control container, which provides

a consistent means of configuring and managing Java objects using callbacks. The

container is responsible for managing object lifecycles: creating objects, calling

initialization methods, and configuring objects by wiring them together.

Objects created by the container are also called Managed Objects or Beans.

Typically, the container is configured by loading XML files containing Bean definitions

which provide the information required to create the beans.

Objects can be obtained by means of Dependency lookup or Dependency injection.

Dependency lookup is a pattern where a caller asks the container object for an

object with a specific name or of a specific type. Dependency injection is a pattern

where the container passes objects by name to other objects, via constructors,

properties, or factory methods.

http://en.wikipedia.org/wiki/Inversion_of_Control
http://en.wikipedia.org/wiki/Aspect-oriented_programming
http://en.wikipedia.org/wiki/Data_access
http://en.wikipedia.org/wiki/RDBMS
http://en.wikipedia.org/wiki/JDBC
http://en.wikipedia.org/wiki/Object-relational_mapping
http://en.wikipedia.org/wiki/Transaction_processing
http://en.wikipedia.org/wiki/Model-view-controller
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Java_Servlet_API
http://en.wikipedia.org/wiki/Remote_procedure_call
http://en.wikipedia.org/wiki/Java_remote_method_invocation
http://en.wikipedia.org/wiki/CORBA
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/Web_services
http://en.wikipedia.org/wiki/SOAP_%28protocol%29
http://en.wikipedia.org/wiki/Convention_over_configuration
http://en.wikipedia.org/wiki/Spring_Roo
http://en.wikipedia.org/wiki/Batch_processing
http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
http://en.wikipedia.org/wiki/Spring_Security
http://en.wikipedia.org/wiki/Spring_Security
http://en.wikipedia.org/wiki/JMX
http://en.wikipedia.org/wiki/Message_queue
http://en.wikipedia.org/wiki/Java_Message_Service
http://en.wikipedia.org/wiki/Software_testing

File: D_2_2_ArchitecturalDesign_final Page 34 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

4.2.2 Hibernate

Hibernate is an object-relational mapping (ORM) library for the Java language,

providing a framework for mapping an object-oriented domain model to a traditional

relational database. Hibernate solves object-relational impedance mismatch

problems by replacing direct persistence-related database accesses with high-level

object handling functions.

Hibernate is a free software that is distributed under the GNU Lesser General Public

License.

Hibernate was started in 2001 by Gavin King as an alternative to using EJB2-style

entity beans. Its mission back then was to simply offer better persistence capabilities

than offered by EJB2 by simplifying the complexities and allowing for missing

features. Early in 2003, the Hibernate development team began Hibernate2 releases

which offered many significant improvements over the first release. JBoss, Inc. (now

part of Red Hat) later hired the lead Hibernate developers and worked with them in

supporting Hibernate. As of 2010 the current version of Hibernate is Version 3.x.

This version introduced new features like a new Interceptor/Callback architecture,

user defined filters, and JDK 5.0 Annotations (Java's metadata feature). As of 2010

Hibernate 3 (version 3.5.0 and up) is a certified implementation of the Java

Persistence API 2.0 specification via a wrapper for the Core module which provides

conformity with the JSR 317 standard.

Hibernate's primary feature is mapping from Java classes to database tables (and

from Java data types to SQL data types). Hibernate also provides data query and

retrieval facilities. Hibernate generates the SQL calls and attempts to relieve the

developer from manual result set handling and object conversion and keep the

application portable to all supported SQL databases with little performance

overhead.

Mapping Java classes to database tables is accomplished through the configuration

of an XML file or by using Java Annotations. When using an XML file, Hibernate can

generate skeletal source code for the persistence classes. This is unnecessary when

annotation is used. Hibernate can use the XML file or the annotation to maintain the

database schema.

Facilities to arrange one-to-many and many-to-many relationships between classes

are provided. In addition to managing association between objects, Hibernate can

also manage reflexive associations where an object has a one-to-many relationship

with other instances of its own type.

Hibernate supports the mapping of custom value types. This makes the following

scenarios possible:

 Overriding the default SQL type that Hibernate chooses when mapping a

column to a property.

 Mapping Java Enum to columns as if they were regular properties.

 Mapping a single property to multiple columns.

Hibernate provides transparent persistence for Plain Old Java Objects (POJOs). The

only strict requirement for a persistent class is a no-argument constructor, not

http://en.wikipedia.org/wiki/JBoss_%28company%29
http://en.wikipedia.org/wiki/Red_Hat
http://en.wikipedia.org/wiki/Java_annotation
http://en.wikipedia.org/wiki/Metadata
http://en.wikipedia.org/wiki/Java_Persistence_API#JPA_2.0
http://en.wikipedia.org/wiki/Java_Persistence_API#JPA_2.0
http://jcp.org/en/jsr/detail?id=317
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/Java_annotation
http://en.wikipedia.org/wiki/Program_synthesis
http://en.wikipedia.org/wiki/Source_code
http://en.wikipedia.org/wiki/Database_schema
http://en.wikipedia.org/wiki/One-to-many
http://en.wikipedia.org/wiki/Many-to-many_%28data_model%29
http://en.wikipedia.org/wiki/Reflexive_relation
http://en.wikipedia.org/wiki/Data_type
http://en.wikipedia.org/wiki/Enumerated_type
http://en.wikipedia.org/wiki/Plain_Old_Java_Object
http://en.wikipedia.org/wiki/Constructor_%28computer_science%29

File: D_2_2_ArchitecturalDesign_final Page 35 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

necessarily public. Proper behavior in some applications also requires special

attention to the equals() and hashCode() methods.

Collections of data objects are typically stored in Java collection objects such as Set

and List. Java generics, introduced in Java 5, are supported. Hibernate can be

configured to lazy load associated collections. Lazy loading is the default as of

Hibernate 3.

Related objects can be configured to cascade operations from one to the other. For

example, a parent such as an Album object can be configured to cascade its save

and/or delete operation to its child Track objects. This can reduce development time

and ensure referential integrity. A dirty checking feature avoids unnecessary

database write actions by performing SQL updates only on the modified fields of

persistent objects.

Hibernate provides an SQL inspired language called Hibernate Query Language

(HQL) which allows SQL-like queries to be written against Hibernate's data objects.

Criteria Queries are provided as an object-oriented alternative to HQL.

Hibernate can be used both in standalone Java applications and in Java EE

applications using servlets or EJB session beans. It can also be included as a feature

in other programming languages. For example, Adobe integrated Hibernate into

version 9 of ColdFusion (which runs on J2EE app servers) with an abstraction layer

of new functions and syntax added into CFML.

4.2.3 XML Processing and Serialisation

XStream is a Java library to serialise objects to XML (or JSON) and back again.

XStream uses reflection to discover the structure of the object graph to serialise at

runtime, and doesn't require modifications to objects. It can serialise internal fields,

including private and final, and supports non-public and inner classes.

XOM is a XML document object model for processing XML with Java that strives for

correctness and simplicity.

dom4j is an open source Java library for working with XML, XPath and XSLT. It is

compatible with DOM, SAX and JAXP standards.

4.3 WORKFLOW MANAGEMENT

4.3.1 BPMN 2.0

BPMN 2.0 is a standardized specification that defines a visualization and XML

serialization of business processes, and can be extended (if necessary) to include

more advanced features.

 It is a standard language, managed by the Object Management Group, and it

is not vendor specific.

 It is based on XML, so it can be read/written almost on every platform and by

every programming language.

 It has a graphical notation to represent the processes in a way similar to the

UML sequence diagram.

http://en.wikipedia.org/wiki/Generics_in_Java
http://en.wikipedia.org/wiki/Lazy_load
http://en.wikipedia.org/wiki/Referential_integrity
http://en.wikipedia.org/wiki/SQL
http://en.wikipedia.org/wiki/Hibernate_Query_Language
http://en.wikipedia.org/wiki/Object-oriented_programming
http://en.wikipedia.org/wiki/Stand-alone
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Java_EE
http://en.wikipedia.org/wiki/Java_Servlet
http://en.wikipedia.org/wiki/EJB
http://en.wikipedia.org/wiki/Adobe_Systems
http://en.wikipedia.org/wiki/ColdFusion
http://en.wikipedia.org/wiki/CFML

File: D_2_2_ArchitecturalDesign_final Page 36 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

One of the main goals of BPMN is to be intuitive for non-technical user and at the

same time powerful in order to describe complex processes. Briefly, BPMN defines

the following main categories of objects:

 Flow objects, which are the main describing elements within BPMN, and

consist of three core elements:

o Event: denotes something that happens and that influences the

process. Events are graphically represented as circle. The most used

events are:

 Start event: the event that starts the process.

 End event: the result of the process.

 Intermediate event: represents something that happens

between the start and end events.

o Activity: describes the actions to be done. Activities are graphically

represented as rounded corner rectangle. In the Activity category

there are:

 Task: a single unit of work, it is the elementary building block.

 Sub-process: an object formed by tasks, events, gateways and

sequence flows that hide business details.

 Transaction: a particular kind of sub-process where all the

activities included must be done as a whole or in case of failure

none of them should be taken (so must be undone if already

executed).

o Gateway: determines a fork or merge of different paths depending on

the conditions expressed. Gateways are graphically represented by a

diamond.

 Connecting objects, which connect to each other different flow objects. They

consist of three types:

o Sequence flow: determines the order between the events, activities

and gateways. It is represented as a solid arrow that connects the two

objects involved in the sequence.

o Message flow: specifies what messages flow across organisational

boundaries. It is represented with a dashed line, an open circle at the

start, and an open arrowhead at the end.

o Association: associates an artifact or text to a flow object. It is

represented with a dotted line.

 Swimlanes, which are a visual mechanism of organising and categorising

activities, and in BPMN consist of two types:

o Pool: represents the major participants in a process. A pool can be

open (i.e., showing internal detail) when it is depicted as a large

rectangle showing one or more lanes, or collapsed (i.e., hiding internal

detail) when it is depicted as an empty rectangle stretching the width

or height of the diagram.

o Lane: organises and categorises activities within a pool according to

function or role, and depicted as a rectangle stretching the width or

height of the pool.

 Artifacts, which allow to bring some more information into the

model/diagram. There are three pre-defined artifacts:

o Data object: shows which data is required or produced in an activity.

File: D_2_2_ArchitecturalDesign_final Page 37 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

o Group: group different activities. It is represented with a rounded-

corner rectangle and dashed lines.

o Annotation: gives to the reader an understandable impression.

4.3.2 Activiti

Activiti is a workflow and Business Process Management (BPM) Platform for Java

application. It's open-source, distributed under the Apache license, and it runs in any

Java application, as a stand-alone one or on a server. Activiti is extremely

lightweight but at same time provides powerful functionality such as the perfect

integration with Spring.

The heart of the Activiti project is the Activiti Engine, a Java process engine that

runs BPMN 2.0 process natively. The engine is easily configurable and it is simple to

embed it in any Java application. Furthermore Activiti provides some useful utilities

such as:

 Activiti Modeler: a web based editor that can be used to create BPMN 2.0

processes graphically;

 Activiti Probe: a web application that provides administration and monitoring

capabilities to keep an Activiti Engine instance up and running;

 Activiti Explorer: a web application that provides access to the Activiti Engine

runtime for all users of the system. It includes task management, viewing

reports and process instance inspection.

4.3.3 jBPM

jBPM is a workflow engine written in Java that can execute processes described in

many languages (e.g. BPMN, BPEL or its own process definition language jPDL). It is

released under the LGPL license by the JBoss Community.

jBPM is a flexible Business Process Management (BPM) Suite. It makes the bridge

between business analysts and developers. It offers process management features in

a way that both business users and developers like it.

jBPM takes process descriptions as input. A process is composed of activities that are

connected with transitions. Processes represent an execution flow. The graphical

diagram of a process is used as the basis for the communication between non-

technical users and developers. Each execution of a process definition is called a

process instance. jBPM manages the process instances. Some activities, like sending

an email or executing a script, are automatic. Other activities involve waiting for an

external occurrence, such as a person completing a task or an application calling

back with the results of a request. jBPM keeps track of the state of the process

executions during those wait periods.

jBPM is based on a generic process engine, which is the foundation to support

multiple process languages natively.

jBPM5 is the latest community version of the jBPM project. It is based on the BPMN

2.0 specification as the language for expressing business processes and supports the

entire life cycle of the business process (from authoring through execution to

monitoring and management).

File: D_2_2_ArchitecturalDesign_final Page 38 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The current jBPM5 snapshot offers open-source business process execution and

management, including

 embeddable, lightweight Java process engine, supporting native BPMN 2.0

execution

 BPMN 2.0 process modelling in Eclipse (developers) and the web (business

users)

 process collaboration, monitoring and management through the Guvnor

repository and the web console

 human interaction using an independent WS-HT task service

 tight, powerful integration with business rules and event processing

4.4 SEARCH ENGINE

4.4.1 Lucene

Apache Lucene(TM) is a high-performance, full-featured text search engine library

written entirely in Java. It is supported by the Apache Software Foundation and is

released under the Apache Software License.

Lucene was originally written by Doug Cutting. It was initially available for download

from its home at the SourceForge web site. It joined the Apache Software

Foundation’s Jakarta family of open source Java products in September 2001 and

became its own top-level Apache project in February 2005. Until recently, it included

a number of sub-projects, such as Lucene Java, Droids, Lucene.Net, Lucy, Mahout,

Solr, Nutch, Open Relevance Project, PyLucene and Tika. Solr has been merged into

the Lucene project itself and Mahout, Nutch and Tika have been moved to be

independent top-level projects.

Lucene has been ported to other programming languages including Delphi, Perl, C#,

C++, Python, Ruby and PHP.

While suitable for any application which requires full text indexing and searching

capability, Lucene has been widely recognized for its utility in the implementation of

Internet search engines and local, single-site searching.

At the core of Lucene's logical architecture is the idea of a document containing

fields of text. This flexibility allows Lucene's API to be independent of the file format.

Text from PDFs, HTML, Microsoft Word, and OpenDocument documents, as well as

many others can all be indexed as long as their textual information can be extracted.

Lucene itself is just an indexing and search library and does not contain crawling and

HTML parsing functionality. However, several projects extend Lucene's capability:

 Apache Nutch provides web crawling and HTML parsing

 Apache Solr – a fully-featured search server

 Compass – a Java Search Engine Framework

 ElasticSearch – A Distributed, Highly Available, RESTful Search Engine

http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Apache_Software_License
http://en.wikipedia.org/wiki/SourceForge
http://en.wikipedia.org/wiki/Jakarta_Project
http://en.wikipedia.org/w/index.php?title=Lucene_Java&action=edit&redlink=1
http://en.wikipedia.org/wiki/Android_%28operating_system%29
http://en.wikipedia.org/wiki/Lucene.net
http://en.wikipedia.org/w/index.php?title=Lucy_%28Lucene%29&action=edit&redlink=1
http://en.wikipedia.org/wiki/Apache_Mahout
http://en.wikipedia.org/wiki/Solr
http://en.wikipedia.org/wiki/Nutch
http://en.wikipedia.org/w/index.php?title=Open_Relevance_Project&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=PyLucene&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Apache_Tika&action=edit&redlink=1
http://en.wikipedia.org/wiki/Object_Pascal
http://en.wikipedia.org/wiki/Perl
http://en.wikipedia.org/wiki/C_Sharp_%28programming_language%29
http://en.wikipedia.org/wiki/C%2B%2B
http://en.wikipedia.org/wiki/Python_%28programming_language%29
http://en.wikipedia.org/wiki/Ruby_%28programming_language%29
http://en.wikipedia.org/wiki/PHP
http://en.wikipedia.org/wiki/Index_%28search_engine%29
http://en.wikipedia.org/wiki/Internet_search_engine
http://en.wikipedia.org/wiki/File_format
http://en.wikipedia.org/wiki/Portable_Document_Format
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Microsoft_Word
http://en.wikipedia.org/wiki/OpenDocument
http://en.wikipedia.org/wiki/Web_spider
http://en.wikipedia.org/wiki/Parsers
http://en.wikipedia.org/wiki/Nutch
http://en.wikipedia.org/wiki/Solr
http://en.wikipedia.org/wiki/Compass_Project
http://www.elasticsearch.org/
http://en.wikipedia.org/wiki/RESTful

File: D_2_2_ArchitecturalDesign_final Page 39 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

4.4.2 Solr

Solr is an open source enterprise search platform from the Apache Lucene project.

Its major features include powerful full-text search, hit highlighting, faceted search,

dynamic clustering, database integration, and rich document (e.g., Word, PDF)

handling. Solr is highly scalable, providing distributed search and index replication,

and it powers the search and navigation features of many of the world's largest

internet sites.

Solr is written in Java and runs as a standalone full-text search server within a

servlet container such as Apache Tomcat. Solr uses the Lucene Java search library at

its core for full-text indexing and search, and has REST-like HTTP/XML and JSON

APIs that make it easy to use from virtually any programming language. Solr's

powerful external configuration allows it to be tailored to almost any type of

application without Java coding, and it has an extensive plugin architecture when

more advanced customization is required.

Apache Lucene and Apache Solr are both produced by the same ASF development

team since the project merge in 2010. It is common to refer to the technology or

products as Lucene/Solr or Solr/Lucene.

In 2004, Solr was created by Yonik Seeley at CNET Networks as an in-house project

to add search capability for the company website. Yonik Seeley along with Grant

Ingersoll and Erik Hatcher went on to launch Lucid Imagination a company providing

commercial support, consulting and training for Apache Solr search technologies. In

January 2006, CNET Networks decided to openly publish the source code by

donating it to the Apache Software Foundation under the Lucene top-level

project.[2] Like any new project at Apache Software Foundation it entered an

incubation period which helped solve organizational, legal, and financial issues. In

January 2007, Solr graduated from incubation status and grew steadily with

accumulated features thereby attracting a robust community of users, contributors,

and committers. Although quite new as a public project, it is already used for several

high-traffic websites. In September 2008, Solr 1.3 was released with many

enhancements including distributed search capabilities and performance

enhancements among many others. November 2009 saw the release of Solr 1.4 This

version introduces enhancements in indexing, searching and faceting along with

many other improvements such as Rich Document processing (PDF, Word, HTML),

Search Results clustering based on Carrot2 and also improved database integration.

The release also features many additional plug-ins. In March 2010, the Lucene and

Solr projects merged. Separate downloads will continue, but the products are now

jointly developed by a single set of committers.

4.4.3 Nutch

Nutch is open source web-search software. It builds on Lucene and Solr for the

search and index component, adding web-specifics, such as a crawler, a link-graph

database, parsers for HTML and other document formats, etc.

Nutch originated with Doug Cutting, creator of both Lucene and Hadoop, and Mike

Cafarella. In June, 2003, a successful 100-million-page demonstration system was

developed. To meet the multimachine processing needs of the crawl and index tasks,

the Nutch project has also implemented a MapReduce facility and a distributed file

http://en.wikipedia.org/wiki/Open_source
http://en.wikipedia.org/wiki/Lucene
http://en.wikipedia.org/wiki/Servlet
http://en.wikipedia.org/wiki/Apache_Tomcat
http://en.wikipedia.org/wiki/HTTP
http://en.wikipedia.org/wiki/XML
http://en.wikipedia.org/wiki/JSON
http://en.wikipedia.org/wiki/Lucene
http://en.wikipedia.org/wiki/CNET_Networks
http://en.wikipedia.org/wiki/Lucid_Imagination
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Solr#cite_note-1
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/PDF
http://en.wikipedia.org/wiki/Microsoft_Word
http://en.wikipedia.org/wiki/HTML
http://en.wikipedia.org/wiki/Carrot2
http://en.wikipedia.org/wiki/Lucene
http://lucene.apache.org/java/
http://en.wikipedia.org/wiki/Doug_Cutting
http://en.wikipedia.org/wiki/Lucene
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/w/index.php?title=Mike_Cafarella&action=edit&redlink=1
http://en.wikipedia.org/w/index.php?title=Mike_Cafarella&action=edit&redlink=1
http://en.wikipedia.org/wiki/MapReduce
http://en.wikipedia.org/wiki/Distributed_file_system

File: D_2_2_ArchitecturalDesign_final Page 40 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

system. The two facilities have been spun out into their own subproject, called

Hadoop. In January, 2005, Nutch joined the Apache Incubator, from which it

graduated to become a subproject of Lucene in June of that same year. Since April,

2010, Nutch has been considered an independent, top level project of the Apache

Software Foundation.

Nutch is coded entirely in the Java programming language, but data is written in

language-independent formats. It has a highly modular architecture, allowing

developers to create plug-ins for media-type parsing, data retrieval, querying and

clustering.

The fetcher ("robot" or "web crawler") has been written from scratch specifically for

this project.

Nutch can run on a single machine, but gains a lot of its strength from running in a

Hadoop cluster

The system can be enhanced (e.g. other document formats can be parsed) using a

plug-in mechanism.

Nutch installations typically operate at one of three scales: local file system,

intranet, or whole web, so that it is possible to configure Nutch in order to satisfy

different purposes. Although Nutch and Lucene could meet the same needs, indeed

Nutch is a better fit for sites where you don't have direct access to the underlying

data, or it comes from disparate sources.

The architecture of Nutch divides in two parts: the crawler and the searcher. The

crawler fetches pages and turns them into an inverted index, which the searcher

uses to answer users' search queries. Between these two parts is the index, that is,

roughly speaking, the only one contact point.

 The crawler system builds and maintains several types of data structures,

including the web database, a set of segments, and the index.

o The database, or WebDB, is a specialized persistent data structure to

store two types of entities: pages and links. A page represents a page

on the Web, and is indexed by its URL and the MD5 hash of its

contents. A link represents a link from one web page (the source) to

another (the target).

o A segment is a collection of pages fetched and indexed by the crawler

in a single run.

o The index is the inverted index of all of the pages the system has

retrieved, and is created by merging all of the individual segment

indexes.

 The search phase is quite straightforward: once installed Nutch web

application, using whatever servlet container, it is enough to tell Nutch where

to find the indexes and the segments generated by the crawler. Then, it is

possible to connect to the Nutch home page and to start searching.

Nutch uses Lucene for its indexing, so all of the Lucene tools and APIs are available

to interact with the generated index.

http://en.wikipedia.org/wiki/Distributed_file_system
http://en.wikipedia.org/wiki/Hadoop
http://en.wikipedia.org/wiki/Apache_Incubator
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Apache_Software_Foundation
http://en.wikipedia.org/wiki/Java_%28programming_language%29
http://en.wikipedia.org/wiki/Web_crawler
http://hadoop.apache.org/

File: D_2_2_ArchitecturalDesign_final Page 41 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

4.5 SCHEDULER

4.5.1 Quartz

Quartz is a full-featured, open source job scheduling service that can be integrated

with, or used alongside virtually any Java EE or Java SE application. Quartz can be

used to create simple or complex schedules for jobs, whose tasks are defined as

standard Java components. The Quartz Scheduler includes many enterprise-class

features, such as JTA transactions and clustering.

Jobs are scheduled to run when a given Trigger occurs. Triggers can be created with

nearly any combination of the following directives:

 at a certain time of day (to the millisecond)

 on certain days of the week

 on certain days of the month

 on certain days of the year

 not on certain days listed within a registered Calendar (such as business

holidays)

 repeated a specific number of times

 repeated until a specific time/date

 repeated indefinitely

 repeated with a delay interval

Jobs can be any Java class that implements the simple Job interface. Job class

instances can be instantiated by Quartz, or by the application's framework. When a

Trigger occurs, the scheduler notifies zero or more Java objects implementing the

JobListener and TriggerListener interfaces (listeners can be simple Java objects, or

EJBs, or JMS publishers, etc.). These listeners are also notified after the Job has

executed. As Jobs are completed, they return a JobCompletionCode which informs

the scheduler of success or failure. The JobCompletionCode can also instruct the

scheduler of any actions it should take based on the success/fail code - such as

immediate re-execution of the Job.

The design of Quartz includes a JobStore interface that can be implemented to

provide various mechanisms for the storage of jobs. With the use of the included

JDBCJobStore, all Jobs and Triggers configured as "non-volatile" are stored in a

relational database via JDBC. With the use of the included RAMJobStore, all Jobs and

Triggers are stored in RAM and therefore do not persist between program executions

- but this has the advantage of not requiring an external database.

4.6 SEMANTIC REGISTRY

The semantic registry has the task of storing metadata about the content different

data providers have available. This includes reasoning on data items and on the

available mappings as well as reasoning on user configurations and created

workflows in order to find suitable data providers for a given query by a given user.

File: D_2_2_ArchitecturalDesign_final Page 42 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Furthermore, not only the definition of available data but also the definition of

interests for specific content items with respect to configured workflows and access

rights must be supported. Finally, also the description and discovery of third party

services to be included in the workflows must be possible.

These specific requirements cannot be directly fulfilled by existing registry

implementations. However, an existing system will be used as a basis on top of

which the extensions for the Harmosearch project are implemented.

The detailed requirements and state-of-the-art analysis for the semantic registry is

done in deliverable D5.1 (Registry Requirements analysis Report). Currently there

are two highly probably candidates for a base technology, the OMAR ebXML registry

and the FUSION Semantic Registry.

4.6.1 OMAR

The Object, Metadata and Artifacts Registry (OMAR) is an implementation of the

ebXML registry specification, supporting XML based business interactions. It provides

a set of services which enables the sharing of content and metadata between

different participants. It allows managing any content type and the standardised

metadata that describe it.

OMAR offers several features that make it a promising candidate of a base

technology for the Harmosearch Semantic Registry. Among these is a role based

access control, facilities for the cataloguing XML content as well as content based

event-notation. OMAR offers Java user interfaces as well as API access for all

relevant user actions.

OMAR is built in Java as a web application running on an application server (Apache

Tomcat is recommended). It needs a relational database system to operate. Besides

Derby and HSQLDB which are shipped with the application, also PostgreSQL and

Oracle databases have been tested. Compatibility with other database management

systems needs to be checked.

OMAR is distributed as open-source software under the very liberal ―freebxml

License‖, which makes no restrictions on deriving and selling software based on the

OMAR registry.

4.6.2 FUSION

The FUSION Semantic Registry is a semantically-enhanced service registry. It is

based on the UDDI1 specification but adds machine understandable semantics for

specifying and discovering services. Therefore, unlike its UDDI base, the FUSION

Semantic Registry supports fully automated, and therefore effective, service

discovery.

It was developed in the context of the IST Research Project "FUSION", funded by the

European Commission in the 6th Framework Programme. , led by SAP AG and a

1 Universal Description, Discovery and Integration; A standard for registering and locating web

services. http://uddi.org/pubs/ProgrammersAPI-V2.04-Published-20020719.htm

File: D_2_2_ArchitecturalDesign_final Page 43 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

consortium consisting of 14 partners from five European countries (Germany,

Poland, Greece, Hungary, Bulgaria).

The FUSION registry uses of SAWSDL2 annotating the service interface descriptions.

Furthermore, it makes use of OWL-DL3 for describing service capabilities and

reasoning.

FUSION is implemented in Java and runs as a standalone web application on a

standard web application server (e.g., Apache Tomcat), using a UDDI compliant

server (e.g., the open-source JUDDI4 server implementation). The FUSION registry

itself is released as open source software under the GPL v3.0 software license.

4.7 QUERY LANGUAGE

4.7.1 XQuery

XML Query Language – or simply XQuery – is a functional programming and query

language for XML databases or collections of XML data. Its first version was

developed by the XML Query working group of the W3C, with the syntax based on

XSLT, SQL and C. For its data model and the function library it uses XPath and XML

schema. XQuery became a W3C recommendation, and is Turing-complete.

XQuery is useful to extract single parts of large XML data collections and therefore to

access XML files like databases (whilst XSLT should be used if complete XML

documents have to be transformed).

In order to realize the (semi-) automatic mapping from and to the various

components in the european tourism market, XQuery can be used to specify these

mappings in structured and well-defined ways. Its application and usage in

HarmoSearch can thus be observed in two different fields: sending a request to all

other participants and getting responses back from them. When getting responses,

XQuery can be used for mapping structures and values, while for sending requests

(or queries) to other participants, the mapping or mediation of the query languages

is a key aspect.

The mapping rules can be specified as rather simple XML documents, which define

the mappings from internal data fields to the one in the central Harmonise schema

(and vice-versa). This means, for each locally defined field name, the corresponding

name of the field in the Harmonise data structure has to be specified, such that the

content of the required fields can then be obtained. Additionally, with the same

specification it is also possible to map the local fields to the ones of the central

model for outgoing responses.

In addition to the structure, values might also have to be mapped or transformed

between the various XML schemas. The problem, when using only the relatively

2 Semantic Annotations for WSDL and XML Schema. http://www.w3.org/TR/sawsdl/

3 OWL Web Ontology Language. http://www.w3.org/TR/owl-features/

4 An open source Java implementation of the UDDI specification. http://juddi.apache.org/

File: D_2_2_ArchitecturalDesign_final Page 44 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

simple structure mapping described previously, is that not only the field names vary

among the participants, but additionally in some cases the data is not even

represented in the same way. Therefore, reference lists have to be mapped too.

These lists contain instructions to extract or compute the fields required for the

Harmonise model from the local XML schema.

Another aspect to be considered is that the various participants might use different

query languages, from which the need for a mediator or some semantic web

mediation architecture arises. This leads to the conclusion that the search queries

have to be mapped in some appropriate way. One possible attempt to face this

problem would be to use query by example. In this case, the query is not

represented by text like in SQL, but by a table structure. Thus, it is often also called

a graphical query language. The reason why this could be of interest in the

HarmoSearch case is that in this case the query language could be standardized for

the whole system, independent of the kind of database each participant is actually

using. In this context, XQuery could be used to represent the tabular structure, i.e.

in fact some XML structure which could also be interpreted as being a table –

containing only the fields or logical expressions that are of interest for a specific

query. A query consisting of a concatenation of AND-conditions could be subdivided

in the single expressions, which would then be the various elements in the XQuery

statement. In this way, how to create queries and interpret them could be unified,

while each participant could still keep its own query language.

4.8 LOGGING

4.8.1 log4j

Log4j is an open-source Java-based logging API that is widely used among the open-

source community. It has been developed under the Jakarta Apache project and has

been released in 1999 under the Apache License. Since then, several open-source

and industrial projects used log4j as their logging API of choice. Popular and well

known open-source projects including log4j are the Hibernate and JBoss initiative.

Due to its success, log4j can be assumed as the de-facto standard for logging Java

applications. Over time, log4j has been ported to other programming languages such

as C/C++/C#, Perl, PHP, and Python. In addition log4j influenced the further

development of related logging APIs. Its principles and core concepts served as a

basis for logging frameworks such as the Java Logging API, SLF4j, or Logback.

The main goal of the log4j API is to allow software developers to investigate and

record the behaviour of the underlying application by means of log data. Thereby,

log statements are directly written and included within the source code and assigned

to different levels of priority. To provide an adequate, flexible, and clean solution

log4j is built upon three major components: loggers, appenders, and layouts.

Loggers serve as centres for capturing relevant log data. They observe and evaluate

log statements that might occur during the execution of an application and generate

appropriate log requests. Log requests are the output holding the concrete log data.

They are forwarded to appropriate log destinations in order to store the relevant

system information. Log statements are always assigned to a certain priority level in

order to indicate their level of importance. For example, a severe exception causing

the application to quit has a higher relevance than a user notification or warning. By

File: D_2_2_ArchitecturalDesign_final Page 45 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

default log4j supports 5 different priority levels (listed ascending starting with the

lowest level): DEBUG, INFO, WARN, ERROR, and FATAL. According to the priority

level of the log statement the logger generates a log request subsuming the relevant

log information. In addition a logger may also be assigned to a priority level. As a

consequence the logger will only accept log statements with a priority level equal to

or greater than its own.

The appender component represents an interface to a specific log destination where

incoming log requests are stored. Possible log destinations are usually log files or

databases. Again, log4j supports many different destinations per default. The most

important built-in appenders are: the JDBC appender, the SMTP appender, and the

socket appender. In some cases it makes sense to save log requests depending on

their priority level to destinations – e.g. notifications to a log file and fatal errors to a

database for further analysis. Thus, log4j supports the concept of appender

additivity, which allows loggers to have multiple appenders. In such a case the

logger decides – based on the priority level of the incoming log statement – which

appender will be used to store the resulting log request.

The third component of the log4j API is the layout component. Layouts are used to

customize the output of a log request. This includes both the textual representation

(e.g. HTML, XML strings, etc.), as well as the content that should be stored. The

latter comprises the functionality to constrain the data to a certain degree of detail.

For example, in some scenarios it makes sense to enrich the log information by

additional data such as execution time, source class, priority level, the line number

from where the log message originated, etc. However, other cases require reducing

the level of detail by excluding certain information from the log request in order to

form an adequate and process-able result, which may serve as an input for further

analysis or debugging issues. Useful layouts that are shipped with log4j are for

example the DataLayout, the HTMLLayout, the XMLLayout and the PatternLayout.

Log4j can be configured programmatically or by external configuration files. The

latter is of special interest to large and complex projects. In such a case it makes

sense to outsource logging configuration to an external file, since it reduces the

initialization effort to a minimum. As a consequence the logging overhead in the

source code can be minimized and the code can be kept nice and clean. Log4j

configuration files are implemented either as XML files or Java property files. Both

can be created and built by a text editor of choice and are not bound to specific

development tools or libraries. The configuration is kept very flexible and allows the

developer to fully customize the logging mechanism by – e.g. specifying the priority

level or type of an appender; number and type of appenders assigned to a specific

logger, etc.

4.9 WEB SERVICES

4.9.1 JAX-WS

The Java API for XML Web Services (JAX-WS) is a Java programming language API

for creating web services. It is part of the Java EE platform from Sun Microsystems.

Like the other Java EE APIs, JAX-WS uses annotations, introduced in Java SE 5, to

simplify the development and deployment of web service clients and endpoints. It is

part of the Java Web Services Development Pack.

File: D_2_2_ArchitecturalDesign_final Page 46 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The Reference Implementation of JAX-WS is developed as an open source project

and is part of project GlassFish, an open source Java EE application server. It is

called JAX-WS RI (For Reference Implementation) and is said to be production

quality implementation (contrary to the former Reference Implementation being a

proof of concept). This Reference Implementation is now part of the Metro

distribution.

JAX-WS also is one of the foundations of WSIT.

JAX-WS 2.0 replaced the JAX-RPC API in Java Platform, Enterprise Edition 5. The

name change reflected the move away from RPC-style and toward document-style

web services.

4.9.2 Spring WS

Spring Web Services (Spring-WS) is a product of the Spring community focused on

creating document-driven Web services. Spring Web Services aims to facilitate

contract-first SOAP service development, allowing for the creation of flexible web

services using one of the many ways to manipulate XML payloads.

The key features of Spring Web services are:

 Powerful mappings. Incoming XML requests can be distributed to any object,

depending on message payload, SOAP Action header, or an XPath expression.

 XML API support. Incoming XML messages can be handled not only with

standard JAXP APIs such as DOM, SAX, and StAX, but also JDOM, dom4j,

XOM, or even marshalling technologies.

 Flexible XML Marshalling. The Object/XML Mapping module in the Spring Web

Services distribution supports JAXB 1 and 2, Castor, XMLBeans, JiBX, and

XStream. And because it is a separate module, it can be used in non-Web

services code as well.

 Spring-WS uses Spring application contexts for all configuration, which should

help Spring developers get up-to-speed nice and quickly. Also, the

architecture of Spring-WS resembles that of Spring-MVC.

 WS-Security support. WS-Security allows signing SOAP messages,

encrypting and decrypting them, or authenticating against them. The WS-

Security implementation of Spring Web Services provides integration with

Acegi Security too.

 Built by Maven.

 Apache license.

4.10 REPOSITORIES

4.10.1 PostgreSQL

PostgreSQL, often simply Postgres, is an object-relational database management

system (ORDBMS). It is released under an MIT-style license and is thus free and

open source software. It has more than 15 years of active development and a

proven architecture that has earned it a strong reputation for reliability, data

integrity, and correctness. It runs on all major operating systems, including Linux,

http://acegisecurity.org/

File: D_2_2_ArchitecturalDesign_final Page 47 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

UNIX (AIX, BSD, HP-UX, SGI IRIX, Mac OS X, Solaris, Tru64), and Windows. It is

fully ACID compliant, has full support for foreign keys, joins, views, triggers, and

stored procedures (in multiple languages). It includes most SQL:2008 data types,

including INTEGER, NUMERIC, BOOLEAN, CHAR, VARCHAR, DATE, INTERVAL, and

TIMESTAMP. It also supports storage of binary large objects, including pictures,

sounds, or video. It has native programming interfaces for C/C++, Java, .Net, Perl,

Python, Ruby, Tcl, ODBC, among others, and exceptional documentation.

An enterprise class database, PostgreSQL boasts sophisticated features such as

Multi-Version Concurrency Control (MVCC), point in time recovery, tablespaces,

asynchronous replication, nested transactions (savepoints), online/hot backups, a

sophisticated query planner/optimizer, and write ahead logging for fault tolerance. It

supports international character sets, multibyte character encodings, Unicode, and it

is locale-aware for sorting, case-sensitivity, and formatting. It is highly scalable both

in the sheer quantity of data it can manage and in the number of concurrent users it

can accommodate.

PostgreSQL prides itself in standards compliance. Its SQL implementation strongly

conforms to the ANSI-SQL:2008 standard. It has full support for sub-queries

(including sub-selects in the FROM clause), read-committed and serializable

transaction isolation levels. While PostgreSQL has a fully relational system catalog

which itself supports multiple schemas per database, its catalogue is also accessible

through the Information Schema as defined in the SQL standard.

Data integrity features include (compound) primary keys, foreign keys with

restricting and cascading updates/deletes, check constraints, unique constraints, and

not null constraints.

It also has a host of extensions and advanced features. Among the conveniences are

auto-increment columns through sequences, and LIMIT/OFFSET allowing the return

of partial result sets. PostgreSQL supports compound, unique, partial, and functional

indexes which can use any of its B-tree, R-tree, hash, or GiST storage methods.

Other advanced features include table inheritance, a rules systems, and database

events.

PostgreSQL runs stored procedures in more than a dozen programming languages,

including Java, Perl, Python, Ruby, Tcl, C/C++, and its own PL/pgSQL, which is

similar to Oracle's PL/SQL. Included with its standard function library are hundreds

of built-in functions that range from basic math and string operations to

cryptography and Oracle compatibility. Triggers and stored procedures can be

written in C and loaded into the database as a library, allowing great flexibility in

extending its capabilities. Similarly, PostgreSQL includes a framework that allows

developers to define and create their own custom data types along with supporting

functions and operators that define their behaviour. As a result, a host of advanced

data types have been created that range from geometric and spatial primitives to

network addresses to even ISBN/ISSN (International Standard Book

Number/International Standard Serial Number) data types, all of which can be

optionally added to the system.

Just as there are many procedure languages supported by PostgreSQL, there are

also many library interfaces as well, allowing various languages both compiled and

http://www.postgresql.org/docs/manuals/

File: D_2_2_ArchitecturalDesign_final Page 48 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

interpreted to interface with PostgreSQL. There are interfaces for Java (JDBC),

ODBC, Perl, Python, Ruby, C, C++, PHP, Lisp, Scheme, and Qt just to name a few.

4.10.2 Exist

eXist-db is an open source database management system built using XML

technology. It stores XML data according to the XML data model and features

efficient, index-based XQuery processing.

eXist allows software developers to persist XML data without writing extensive

middleware. eXist follows and extends many W3C XML standards such as XQuery.

eXist also supports REST interfaces for interfacing with AJAX-type web forms.

Applications such as XForms may save their data by using just a few lines of code.

The WebDAV interface to eXist allows users to "drag and drop" XML files directly into

the eXist database. Because eXist automatically indexes documents using a keyword

indexing system it is very easy to create high-performance document search

systems with eXist.

eXist was created in 2000 by Wolfgang Meier who still is the lead developer as of

2010. In September 2006, it reached version 1.0 and 1.1 (new numbering scheme).

Current maintenance activities are on the 1.4.x versions and new developments are

on the 1.5dev version that will be released as 1.6.0.

eXist-db supports many (web) technology standards making it an excellent platform

for developing web based applications:

 XQuery 1.0 / XPath 2.0 / XSLT 1.0 (using Apache Xalan) or XSLT 2.0

(optional with Saxon)

 HTTP interfaces: REST, WebDAV, SOAP, XMLRPC, Atom Publishing Protocol

 XML database specific: XMLDB, XUpdate, XQuery update extensions (to be

aligned with the new XQuery Update Facility 1.0)

The 1.4 version adds a new full text index based on Apache Lucene, a lightweight

URL rewriting and MVC framework as well as support for XProc. Most important, the

XQuery engine has seen a major redesign, resulting in improved performance.

eXist-db is highly compliant with the XQuery standard (current XQTS score is

99.4%). The query engine is extensible and features a large collection of XQuery

Function Modules.

eXist-db provides a powerful environment for the development of web applications

based on XQuery and related standards. Entire web applications can be written in

XQuery, using XSLT, XHTML, CSS and Javascript (for AJAX functionality). XQuery

server pages can be executed from the filesystem or stored in the database.

4.10.3 Oracle Berkeley DB

Berkeley DB (BDB) is a computer software library that provides a high-performance

embedded database for key/value data. Berkeley DB is a programmatic software

library written in C with API bindings for C++, PHP, Java, Perl, Python, Ruby, Tcl,

Smalltalk, and most other programming languages. BDB stores arbitrary key/data

pairs as byte arrays, and supports multiple data items for a single key. Berkeley DB

is not a relational database. BDB can support thousands of simultaneous threads of

http://en.wikipedia.org/wiki/World_Wide_Web_Consortium
http://en.wikipedia.org/wiki/XQuery
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://en.wikipedia.org/wiki/Ajax_%28programming%29
http://en.wikipedia.org/wiki/XForms
http://en.wikipedia.org/w/index.php?title=Wolfgang_Meier&action=edit&redlink=1
http://en.wikipedia.org/wiki/Web_2
http://www.w3.org/TR/xquery/
http://www.w3.org/TR/xpath20/
http://www.w3.org/TR/xslt
http://www.w3.org/TR/xslt20
http://saxon.sourceforge.net/
http://en.wikipedia.org/wiki/Representational_State_Transfer
http://www.webdav.org/
http://www.w3.org/TR/soap/
http://en.wikipedia.org/wiki/XML-RPC
http://en.wikipedia.org/wiki/Atom_%28standard%29
http://xmldb-org.sourceforge.net/xupdate/
http://exist.sourceforge.net/update_ext.html
http://www.w3.org/TR/xquery-update-10/
http://exist.sourceforge.net/download.html
http://www.w3.org/TR/xquery/
http://www.w3.org/XML/Query/test-suite/
http://www.w3.org/XML/Query/test-suite/XQTSReportSimple.html
http://demo.exist-db.org/exist/xquery/functions.xql

File: D_2_2_ArchitecturalDesign_final Page 49 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

control or concurrent processes manipulating databases as large as 256 terabytes,

on a wide variety of operating systems including most Unix-like and Windows

systems, and real-time operating systems. Berkeley DB is also used as the common

name for three distinct products; Oracle Berkeley DB, Berkeley DB Java Edition, and

Berkeley DB XML. The first is the traditional Berkeley DB, written in C. Berkeley DB

Java Edition (JE) is a pure Java database. Its design resembles that of Berkeley DB

without replicating it exactly, and has a feature set that includes many of those

found in the traditional Berkeley DB and others that are specific to the Java Edition.

Since it is written in pure Java, no native code is required. It has a log structured

storage architecture, which gives it different performance and concurrency

characteristics. Three APIs are available—a Direct Persistence Layer which is "Plain

Old Java Objects" (POJO); one which is based on the Java Collections Framework (an

object persistence approach); and one based on the traditional Berkeley DB API. The

Berkeley DB Java Edition High Availability option (Replication) is available. Note that

traditional Berkeley DB also supports a Java API, but it does so via JNI and thus

requires an installed native library. The Berkeley DB XML database specializes in the

storage of XML documents, supporting XQuery via XQilla. It is implemented as an

additional layer on top of (a legacy version of) Berkeley DB and the Xerces library.

DB XML is written in C++ and supports multiple language bindings, including C++,

Java (via JNI), Perl and Python.

Berkeley DB originated at the University of California, Berkeley as part of the

transition (1986 to 1994) from 4.3BSD to 4.4BSD and of the effort to remove AT&T-

encumbered code. The first code, due to Seltzer and Yigit, attempted to create a disk

hash table that performed better than any of the existing Dbm libraries. In 1996

Netscape requested that the authors of Berkeley DB improve and extend the library,

then at version 1.86, to suit Netscape's requirements for an LDAP server and for use

in the Netscape browser. That request led to the creation of Sleepycat Software. This

company was acquired by Oracle Corporation in February 2006, which continues to

develop and sell Berkeley DB.

Since its initial release, Berkeley DB has gone through various versions. Each major

release cycle has introduced a single new major feature generally layering on top of

the earlier features to add functionality to the product. The 1.x releases focused on

managing key/value data storage and are referred to as "Data Store" (DS). The 2.x

releases added a locking system enabling concurrent access to data. This is what is

known as "Concurrent Data Store" (CDS). The 3.x releases added a logging system

for transactions and recovery, called "Transactional Data Store" (TDS). The 4.x

releases added the ability to replicate log records and create a distributed highly

available single-master multi-replica database. This is called the "High Availability"

(HA) feature set. Berkeley DB's evolution has sometimes led to minor API changes or

log format changes, but very rarely have database formats changed. Berkeley DB HA

supports online upgrades from one version to the next by maintaining the ability to

read and apply the prior release's log records.

The FreeBSD and OpenBSD operating system continue to use Berkeley DB 1.8x for

compatibility reasons; Linux-based operating systems commonly include several

versions to accommodate for applications still using older interfaces/files.

Berkeley DB is redistributed under the Sleepycat Public License, which is an OSI-

approved open source license as well as an FSF-approved free software licence. The

File: D_2_2_ArchitecturalDesign_final Page 50 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

product ships with complete source code, build script, test suite, and documentation.

The code quality and general utility along with the licensing terms have led to its use

in a multitude of free and open source software. Those who do not wish to abide by

the terms of the Sleepycat Public License have the option of purchasing another

proprietary license for redistribution from Oracle Corporation. This technique is called

dual licensing.

Berkeley DB includes compatibility interfaces for some historic Unix database

libraries: dbm, ndbm and hsearch (a System V library for creating in-memory hash

tables).

Berkeley DB has an architecture notably simpler than that of other database systems

like Microsoft SQL Server and Oracle. For example, like SQLite, it does not provide

support for network access — programs access the database using in-process API

calls. Oracle added support for SQL in 11g R2 release based on the popular SQLite

API by including a version of SQLite in Berkeley DB. Consequently, as is common

with SQLite, there is now 3rd Party support for PL/SQL in Berkeley DB through

Metatranz StepSqlite.

A program accessing the database is free to decide how the data is to be stored in a

record. Berkeley DB puts no constraints on the record's data. The record and its key

can both be up to four gigabytes long.

Despite having a simple architecture, Berkeley DB supports many advanced

database features such as ACID transactions, fine-grained locking, hot backups and

replication.

File: D_2_2_ArchitecturalDesign_final Page 51 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5 COMPONENT VIEW

This section provides a detailed view on how the components identified in the logical

view will be implemented considering the chosen infrastructural components.

Two different perspectives are provided:

 The Portlet Component View, which shows the GUI components, the related

core components and their relationship;

 The Service Component View, which focuses on the core components, the

exposed services, the external services used and how they are related.

5.1 PORTLET COMPONENT VIEW

This view shows the components which will implement the User Interface of the

system. Since a portal based architecture has been chosen, each GUI component is

identified by a portlet, a specific GUI component having a well defined role and

interacting with the underlying services to support the necessary interactions with

the users.

The diagram of Figure 3 shows the main portlets and how they are related with the

core components. New portlets are shown in red, while existing portlet are identified

in yellow. Core components’ descriptions can be found in the logical view diagram of

paragraph 2.1. Only the components which need a GUI are included in the following

figure.

File: D_2_2_ArchitecturalDesign_final Page 52 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Figure 3 Portlet Component View

File: D_2_2_ArchitecturalDesign_final Page 53 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5.1.1 User Manager Portlets

The User Manager Portlets allow managing organisations and users, thus providing

the user interface to:

 Register a new organisation or edit its settings.

 Register new users which are administrators of the organisation, thus

in charge of configuring the services offered or consumed by that

organisation.

 Register new users belonging to the organisation, who are authorized to

act on behalf of the organisation.

It will exploit the user management Liferay features, which allow defining and

assigning roles to users and managing permission in a hierarchical way.

5.1.2 Access Control Portlets

The Access Control Portlets provide the following user interfaces:

 Access control policies configuration. It offers the possibility to add, edit,

delete and configure access control policies to restrict access to data and

services, by specifying the data or service to be protected, the participants

which are allowed to access the data or to use the service and the constraints

under which access is allowed (e.g. time period or number of times). In

particular it allows to:

o Configure the access rights for each data provider in different

granularities (e.g., for specific Harmonise participants or a specific

group of participants). See 5.1.7, ―Fehler! Verweisquelle konnte

nicht gefunden werden.‖;

o Configure the access rights for each service in different granularities

(e.g., for specific Harmonise participants or a specific group of

participants). See 5.1.8, ―Service Registry Portlets‖.

 Access control policies visualisation. It provides capacity to view all the

access control policies currently active.

5.1.3 Log Manager Portlets

The Log Manager Portlets provide the following user interfaces:

 System event monitoring configuration. Allows the user to edit the

current monitoring configuration. It offers the possibility to add or delete

registered system activities.

 Visualization of current monitoring status. Describes the possibility to list

actively monitored system activities ordered by type or name. The activities

are listed in tabular form.

 Registration of new system activities. Provides the possibility to define

and register new system activity types. A new system activity may be

described by a specific workflow including necessary parameters and services.

File: D_2_2_ArchitecturalDesign_final Page 54 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5.1.4 Workflow Definition Portlets

The Workflow Definition Portlets provide the following user interfaces:

 Workflow editing. If the current user has the appropriate user rights, it

offers the possibility to add, edit, delete and configure workflow processes. A

workflow may include the set of services to be executed, a recipient (e.g.

whom to send data to or whom to query) and other parameters (e.g. type of

data to be pushed or to be queried).

 Workflow monitoring. To obtain information on the workflows currently in

execution and on their status.

 Workflow instantiation and execution. To select a specific workflow and

schedule its execution. Each participant can schedule a job specifying the

time when the workflow has to be triggered, e.g. every day, every week,

every month, etc.

5.1.5 Data Transfer Portlets

The Data Transfer Portlets provide the following user interfaces:

 Possibility to push data to other participants in the Harmonise network.

The interface supports the data transfer definition by means of a form which

allows to select the data to be pushed and the recipient, e.g. whom to send

data to.

5.1.6 Metasearch Portlets

The Metasearch Portlets provide the following user interfaces:

 Possibility to specify search criteria to perform queries on data instances

available in the Harmonise network. The interface supports the query

definition by means of a dynamic form which allows selecting the data type to

be queried and the definition of the search criteria by combining attributes to

be queried, operators and values to be matched. According to the attribute

type, the interface supports the user to enter the correct values (e.g. for date

fields, it allows to specify only dates). For enumerated values, the interface

exploits the available metadata to support the selection of the values among

the ones supported for that specific field.

 Display of the result set. The items found are shown as a list, in a

paginated way. Items can be then sorted according to specific sort criteria.

Slow queries could show the results asynchronously as they become

available.

5.1.7 Data Registry Portlets

The Data Registry Portlets provide user interfaces to:

 Register as a data provider. This means that after the normal registration

for the Harmonise participant and the upload of appropriate mappings, the

content of the data provider is described in a semantic way. The description

process is aided by the analysis of the uploaded mapping, which provides a

first impression of the available data. Further explication of what kind of

File: D_2_2_ArchitecturalDesign_final Page 55 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

content the data provider can supply is done through dynamic forms similar

to the composition of a search query in the metasearch portlets (see 5.1.6,

―Metasearch Portlets‖). As with a search query, the participant can provide

restrictions to describe what kind of data is available.

 Configure the connection for providing data access, normally by

implementing a Harmonise data connector providing web-service access to

the data.

 Discover data providers in order to configure access control or to select

specific data providers when configuring a workflow (see 5.1.2, ―Access

Control Portlets‖ and 5.1.4, ―Workflow Definition Portlets‖).

5.1.8 Service Registry Portlets

The Service Registry Portlets provide user interfaces to:

 Register a service in the Harmonise network, thus creating a new service,

describing its effect textually and by means of a description of the required

input and the returned output data.

 Configure the service connection, i.e., in which form (normally as web-

service) the service is provided and what the parameters (e.g., web-service

URL) are.

 Discover services, especially by description and name. This allows

Harmonise participants to discover appropriate services in order to use them

in specific workflows (see 5.1.4, ―Workflow Definition Portlets‖).

5.1.9 Subscription Portlets

The Subscription Portlets provide the following user interfaces:

 Data subscription. It offers the possibility to subscribe to data profiles in

order to be notified if new data are available which may be of interest for the

user. Participants can add, edit, delete subscriptions and specify the actions

to be triggered if new data or updates to data corresponding to the data

profile they have subscribed to are published in the Data Registry. Actions

may include e.g. sending a notification; execute the process which allows

getting data from the service provider and sending them to the subscriber,

etc.

 Visualisation of the subscribed data. Possibility to view all the data

subscriptions currently active.

5.1.10 Mapping Portlets

The primarily task of the Mapping Portlets is to provide a view on the registered

mappings (registration actually takes place using the Mapping Tool). In addition, it

may also provide editing capabilities in order to configure and manage mappings.

The main editing capabilities are:

 Functions to manage the lifecycle of uploaded mappings, such as

activation and de-activation of mapping versions as well as deprecating and

removing of mapping versions.

File: D_2_2_ArchitecturalDesign_final Page 56 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Assignment of SW-components to mappings that perform the actual

transformation such as a particular XSLT Processor.

5.1.11 Connector Portlets

Connector Portlets allow each participant to interact with the system. They

implement mailboxes that allow participants to send data to other participants,

receive data from other participants or receive data by querying the harmonise

network. In particular they offer:

 Possibility to store uploaded data and to download data received by other

participants. These GUIs follow an inbox/outbox/sent-box scheme: the

outbox stores information on data which are in the process of being uploaded,

the sent-box contains information on data which has already been uploaded

and the inbox allows downloading content received from other participants.

 Possibility to receive the results of a distributed query as a file. This GUI

allows downloading the results of the queries performed by the participant.

5.2 SERVICES COMPONENT VIEW

This section focuses on the core components of the system, thus the main building

blocks implementing the business logic.

Their interactions, i.e. how they interact with external services and the interfaces

they expose to the outside world, are highlighted in the diagram of Figure 4. New

services are shown in red, while existing services are identified in yellow. Core

components’ descriptions can be found in the logical view diagram of paragraph 2.1.

In the following figure the Service Connector logical component is split in the specific

connectors to the most important external services that could be possibly plugged in.

File: D_2_2_ArchitecturalDesign_final Page 57 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Figure 4 Services Component View

File: D_2_2_ArchitecturalDesign_final Page 58 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Here below is presented a more detailed specification of each core component,

including implementation approach, interfaces exposed and interfaces used of other

components. It is not the aim of this section to give a full specification of each

interface, so only some examples of possible methods are outlined. A full

specification will be provided in the following project deliverables (D3.1 ―Ontology for

the query model‖, D3.2 ―Ontology for the registry model‖, D4.1 ―Semantic query –

Query language specification‖, D5.1 ―Registry Requirements analysis‖).

5.2.1 User Manager

The User Manager Component is to manage users and organizations. It is

implemented by exploiting the Liferay user management component.

Interfaces exposed:

 UserManager

o login. Allows to log in a given user (by username and password)

o getCurrentUser. Returns a data structure representing current user

properties

o updateUser. Allows updating properties about the current user.

o getRoles. Returns the roles of the current user. Roles are used by the

services to understand if a given user can access or not certain

functionality.

o getCurrentUserOrganization. Returns the organization(s) to which

the current user is associated.

o getOrganizations. Returns the list of organizations registered in the

system.

The component does not depend on other components.

5.2.2 Access Control

The Access Control component is used to allow the configuration of Access Control

policies (ACP). An ACP restricts or accepts access to specific data or services. It will

be implemented as a Java module.

Interfaces exposed:

 AccessControlManager. Is used to manage access control policies. Therefore,

the main functionality allows access to certain policies, update policies, and to

create and assign new policies to a given service.

o getAccessControlPoliciesForService. Returns all access control

policies that have been committed to a given service.

o getAccessControlPoliciesForUser. To receive all access control

policies which have been specified by the user.

o updateAccessControlPolicy. To update an existing access control

policy.

o createAccessControlPolicy. To create a new access control policy.

File: D_2_2_ArchitecturalDesign_final Page 59 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

o isAccessableByServiceConsumer. Determines if a given service

may be accessed by a specific user. The user is identified by username

and password.

5.2.3 Log Manager

The Log Manager component is in charge of monitoring certain system activities that

reflect the use of the Harmonise system.

The Log Manager component will be implemented using the popular open-source

logging framework log4j.

Interfaces exposed:

The component exposes the following primary interfaces:

 LogManager. The main functionality of the LogManager interface is to allow

access to certain log data, save this data and configure the type of system

event which should be monitored.

o extractLogData. Extracts relevant meta-data out of a given system

activity.

o storeLogData. Writes the gathered log information to the target log-

destination.

o addSystemActivity. Adds a new observable system activity to the

monitoring pool.

o removeSystemActivity. Un-registers a given system activity.

o prepareLogData. Prepares the meta-data extracted from an

observed system activity for logging. The format depends on the

target log-destination.

o getLogDestination. Returns the path to the target log-destination.

o setLogDestination. Sets the target log-destination.

o getLogData. Returns a result set including log data that corresponds

to given search parameters.

 LogManagerService [WebService]. Web Service API which allows looking up

log data.

5.2.4 Workflow

The role of the Workflow Component is to allow the definition of specific processes

and to control their execution.

It is implemented by exploiting the JBPM/Activiti Workflow engine technology,

described in the infrastructural view.

Interfaces exposed:

 WorkflowStorage. It allows loading new workflows, editing their definition and

configuration, deleting them and obtaining a list of defined workflows

(considering the current user capabilities).

File: D_2_2_ArchitecturalDesign_final Page 60 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 WorkflowEngine. It allows starting a new process, checking its status, and

killing one process.

 WorkflowMetasearchService [WebService]. Web Service API which allows

running distributed queries among the participant in the Harmonise network.

 WorkflowDataTransferService [WebService]. Web Service API which allows

pushing content for a well defined recipient or importing content from

selected data sources.

Interfaces used:

 ServiceRegistry. To obtain the specifications on how to invoke an external

service.

 AccessControlManager. To checks whether a participant has the rights to

execute a service.

 DataRegistry. To find appropriate data providers, to look up the provider’s

configuration and to add additional information to the data registered.

 MetasearchQueryProcessor. To run distributed queries.

 ReconciliationEngine. To transform data among different data formats.

 DataConnector. To push data from one participant to another one.

 ServiceConnector. To perform external services to be executed by the

components participating in the workflow.

 LogManager. To log relevant information.

 UserManager. To obtain user profile information.

5.2.5 Scheduler

The role of the Scheduler Component is to schedule specific workflow processes to

be automatically executed at defined interval times.

It is implemented by exploiting the Quartz job scheduling service, described in the

infrastructural view.

Interfaces exposed:

 SchedulerManager. It allows scheduling new jobs, editing their definition and

configuration, deleting them and obtaining a list of scheduled jobs.

Interfaces used:

 WorkflowEngine. To run the scheduled process.

5.2.6 Reconciliation

The Reconciliation Engine Component is responsible for the harmonisation of queries

and query results.

Interfaces exposed:

 ReconciliationEngine. Service which offers translation of queries and results

from source format to target format.

File: D_2_2_ArchitecturalDesign_final Page 61 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

o requestToProvider: transforms a particular request from a source

format to a target format.

o resultToProvider: transforms a particular result from a source format

to a target format.

Interfaces used:

 MappingStore. In order to get a hold of a suitable mapping for a particular

request or result format.

5.2.7 Notification Manager

The role of the Notification Manager Component is to monitor the system to discover

when a specific process should be started.

Interfaces exposed:

 NotificationManager. It allows triggering the execution of a process when a

given event occurs, e.g. when new or updated data are published to the

Harmonise network.

Interfaces used:

 DataRegistry. To look up the data registry to find which are the new or

updated data and which are the users who subscribed to those data and need

to be notified.

 WorkflowEngine. To trigger the execution of the requested process.

5.2.8 Metasearch

The role of the Metasearch Component is to run distributed queries among the

participants in the Harmonise network and to aggregate the results.

Content available to be queried can reside in external repositories as well as on a

local repository which indexes external content. The local search engine is

implemented by exploiting the Solr search platform and the Lucene Java search

library, described in the infrastructural view.

Interfaces exposed:

 MetasearchQueryProcessor. It allows performing distributed queries

aggregating results coming both from the local repository and from external

data sources.

 MetasearchResultCache. It allows storing temporarily search results in order

to be further elaborated.

 MetasearchSearchEngine. It allows indexing web pages, storing locally

external content, and running queries on this local repository.

Interfaces used:

 ReconciliationEngine. To transform queries and search results among different

query languages and data formats.

 DataConnector. To query external data providers and get the results.

File: D_2_2_ArchitecturalDesign_final Page 62 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5.2.9 Crawler

The role of the Crawler Component is to browse external web pages and to create a

copy of all the visited pages for later processing by the local search engine.

It is implemented by exploiting the Nutch web-search software, described in the

infrastructural view.

Interfaces exposed:

 CrawlerManager. It allows configuring the crawler.

Interfaces used:

 MetasearchSearchEngine. To index locally the web pages downloaded by the

crawler.

5.2.10 Data Registry

The Data Registry Component stores and manages metadata describing also the

interests of Harmonise participants in specific data but mainly describes what kind of

content a data provider has available.

The data registry builds upon open source base technology (see section

4.6,‖Semantic Registry‖). The metadata schema of the data registry will be

described but not necessarily implemented as RDF(S) ontology.

Interfaces exposed:

It provides the following main interfaces:

 DataRegistry. To set up and use the metadata about what kind of information

a Harmonise user is interested in or provides. This also includes configuration

information dealing with how to access that content.

o setDataDescription. To set the metadata describing either the

content a data provider can deliver or the content a data consumer is

interested in (e.g., for alerts). Furthermore, the possibility to describe

the provided data in a textual way is also supported.

o annotateDataDescription. Adds annotations to the data description.

o setProviderConfiguration, getProviderConfiguration. To set up

and look up the provider’s configuration (e.g., the web service for

calling the provider’s search routines).

o findDataProviders. To list and look up data providers according to

specific search criteria like name and (free text) description.

o findDataProvidersForQuery, findParticipantsForData. These

interfaces provide methods for finding data providers which can

possibly answer a given search query. Also, a very similar functionality

is provided to look up users interested in specific data objects.

 DataRegistryService [WebService]. Web Service API which allows from one

side data providers to update the meta-information associated to their data,

on the other side data consumers to specify their interest in certain data

items.

File: D_2_2_ArchitecturalDesign_final Page 63 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Interfaces used:

It uses the following interfaces:

 UserManager. To look up the corresponding Harmonise user in order to

associate the user with the data description or configuration.

5.2.11 Service Registry

The Service Registry Component stores the description of available services to be

used in workflows. It is based on the same technology as the data registry and is

possibly implemented in the same module.

Interfaces exposed:

It provides the following main interfaces:

 ServiceRegistry. To set up and look up what external services are provided by

Harmonise participants. This also includes configuration information dealing

with how to access these services.

o registerService, setServiceDescription. To make a new service

known to the Harmonise network. The service is associated with a

specific Harmonise participant as service provider and described in

both a textual and a formal way (including the expected input and

output of the service).

o setServiceConfiguration, getServiceConfiguration. To set up and

look up the service configuration (e.g., the web-service interface for

calling the service).

o findService. To list and find available services according to specific

search criteria like name, textual description and processed data

items.

 ServiceRegistryService [WebService]. Web Service API which allows looking

up services stored in the registry.

Interfaces used:

It uses the following interfaces:

 UserManager. To look up the corresponding Harmonise user in order to

associate the user with the service description or configuration.

5.2.12 Mapping Store

The Mapping Store Component holds the mappings and provides management

functionality.

Interfaces exposed:

 MappingStore. Gives access to the database that holds mappings.

o getMapping: Takes as input a mapping ID and returns the mapping

with that particular ID. Has as restriction that user is allowed to get

the artefact.

File: D_2_2_ArchitecturalDesign_final Page 64 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

o listMappings: Gives a list of mappings from the database that the

user is permitted to see, i.e., it returns not the mappings but only

mapping IDs.

o setState: Sets the current state of a particular mapping identified by

a mapping ID. States may be either activated, de-activated,

deprecated.

o getState: gets the state of a particular mapping identified by a

mapping ID.

o setVersion: Sets the version field of a particular mapping identified

by a mapping ID.

o getVersion: Gets the version field of a particular mapping identified

by a mapping ID.

o setPolicy: Sets the policy to a given mapping, i.e., defines who is

permitted to access the mapping with the given mapping ID.

o getPolicy: gets the policy to a given mapping, i.e., defines who is

permitted to access the mapping with the given mapping ID.

o uploadMapping: Loads a new mapping into the mapping store,

returns a newly generated unique mapping ID.

5.2.13 Connector

A connector represents a proxy for external services to be invoked, which can

provide access to data integrated in the network or other kind of services (e.g. data

modification, ranking, recommendation, etc.). Thus it provides a common interface

to the other components of the system.

Interfaces exposed:

 DataConnector

o query. Allows to send a query to an integrated system

o push. Allows to push data to the integrated system

 ServiceConnector

o execute. Executes an external service. It receives an XML file and

returns another XML file as result.

 select. The external service either selects the service to be

executed among a set of possible services passed as

parameters or selects the service on its own by invoking the

ServiceRegistry web services.

 modify. Modifies data passed as parameter as an XML file.

 rank. Ranks and sorts a given result set passed as parameter

as an XML file. Within the input file, profile information of the

current user is provided.

File: D_2_2_ArchitecturalDesign_final Page 65 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 getRecommendations. Selects items to be recommended

among the ones passed as parameter as an XML file. Within the

input file, profile information of the current user is provided.

5.3 WORKFLOW ENGINE

5.3.1 General Terms

A workflow consists of a sequence of connected steps and it may be seen as a virtual

representation of actual work. Each step implements an activity. A process is a more

specific notion than a workflow, and may be distinguished from the former by the

fact that it has well-defined inputs, outputs and purposes. It contains a start, an end

and at least one activity between them. There are two kinds of activities: task and

sub-process.

 A task is an atomic activity which represents work that cannot be broken

down.

 On the contrary, a sub-process represents work that can be broken down to a

finer level of detail.

When designing a workflow it is important to determine the right granularity of the

single activities to properly define the boundaries of each step. In order to build a

significant brick of the workflow frame, a step should not be too big or too small and,

if necessary, it should be possible to reuse it in other similar contexts.

In the scope of the HarmoSearch project, a task is an activity that indeed can be

composed by several minor operations, but that can be still considered as a single

operation (e.g. check permissions or reconciliate data); a sub-process groups

together a series of tasks needed to fulfil a macro-operation (e.g. query a data

provider).

Each user may create his own workflows, selecting the service to use and

configuring it. He may also chain different services together to create a service flow

to be executed by the workflow engine (e.g. run a query and get the results sorted,

filtered and paginated).

Services can be selected among core services, i.e. built-in functions of the

Harmonise platform, like pushing data to a selected recipient or run a distributed

query, and external services, i.e. functionalities offered by an external component

which can be plugged in the Harmonise platform, like recommending, ranking or

data modification.

A HarmoSearch workflow or process can therefore be defined as the set of activities

that are needed to fulfill one or more services requested by the participants.

5.3.2 HarmoSearch Workflows

HarmoSearch Activities

Here are the main activities that compose the processes needed to fulfill the services

offered by the Harmonise platform.

 Metadata Upload: data provider uploads to the Harmonise portal some

information on his data in form of metadata

File: D_2_2_ArchitecturalDesign_final Page 66 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Access Control List (ACL): determines if the user has the proper right on the

requested operation

 Data Transfer: writes data/metadata to or reads data/metadata from a

determined user by using the file system connector provided by Harmonise or

by invoking an appropriate service provided by the user

 Metadata Registering: stores metadata in the semantic registry

 Notification: notifies the system that an event occurred that may need to

start a new process

 Data Upload: data provider uploads some data to the Harmonise portal

 Data Enrichment: add additional information to the data published in the

semantic registry

 Data Reconciliation: translates data from one format to another one based on

a mapping rule

 Mapping Rules: retrieves the mapping rules for the data reconciliation

 Data Subscription: data consumer specifies the data profiles he is interested

in to regularly import data into his system

 Query Submission: sends the query to the data provider (by invoking an

appropriate search routine provided by the user) and gets the results

 Query Reconciliation: the translation of queries from the Harmonise query

language to the data provider's one

 Query Definition: data consumer specify some search criteria and sends the

query to Harmonise

 Local Repository Lookup: queries the local repository

 Data Providers Selection: find appropriate data providers, i.e. providers which

own data a user may be interested in

 Results Visualisation: displays to the users the results of a query (possibly

asynchronously)

 Data Storing (external task): stores data in a CMS

 Service References: retrieves the references to the external service to be

invoked

 Data Selection: data consumer selects some data he wants to download

 Data Retrieval (external task): retrieves data from the CMS

 Recommendation Request: data consumer asks for recommendations about

items related to a specific topic of interest

 User Profile Retrieval: retrieves user profile information

 Recommended Data Providers Selection (external task): find recommended

data providers, i.e. providers which own data matching a recommendation

request

File: D_2_2_ArchitecturalDesign_final Page 67 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Recommended Results Selection (external task): identifies the results which

match a recommendation request

 Data Accumulation and Caching: accumulation and caching of the results of a

query

 Data Sorting / Filtering / Paginating (external task): sorts /filters / paginates

incoming results from queried data providers

 Data Modification (external task): transforms data received from data

providers (e.g. controlling, correcting, completing, transforming or translating

content according to the user’s needs)

HarmoSearch Processes

Here are the main processes implemented and managed by HarmoSearch Workflow

Engine to fulfil the services offered to the participants. Each service or service chain

will be implemented as a process and the list of tasks needed to compose each

process is specified below.

Let’s start with the main processes that will be used to implement some of the core

services, i.e. the ones involving data exchange.

1. Publishing of new data

a. Metadata Upload

b. ACL

c. Data Transfer

d. Metadata Registering

i. Notification

2. Pushing of data to a selected recipient

a. Data Upload

b. ACL

c. Data Transfer

d. Data Enrichment (optional)

e. Data Reconciliation

i. Mapping Rules

f. Data Transfer

3. Importing data from selected data sources

a. Data Subscription

b. ACL

c. Query Submission

i. Query Reconciliation

d. Data Enrichment (optional)

e. Data Reconciliation

File: D_2_2_ArchitecturalDesign_final Page 68 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

i. Mapping Rules

f. Data Transfer

4. Metasearch

a. Query Definition

b. ACL

c. Data Providers Selection

d. Query Submission

i. Local Repository Lookup

ii. Query Reconciliation

e. Data Enrichment (optional)

f. Data Reconciliation

i. Mapping Rules

g. Results Visualisation

Besides the processes described above, the workflow engine allows managing also

processes which include the execution of external services.

1. Data hosting

a. Data Upload

b. ACL

c. Data Reconciliation

i. Mapping Rules

d. Data Storing

i. Service References

2. Data download

a. Data Selection

b. ACL

c. Data Retrieval

i. Service References

d. Data Reconciliation

i. Mapping Rules

e. Data Transfer

3. Request recommendations

a. Recommendation Request

b. ACL

c. User Profile Retrieval

d. Recommended Data Providers Selection

File: D_2_2_ArchitecturalDesign_final Page 69 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

i. Service References

e. Query Submission

i. Query Reconciliation

f. Data Enrichment (optional)

g. Recommended Results Selection

i. Service References

h. Data Reconciliation

i. Mapping Rules

i. Results Visualisation

Finally services (core and external ones) can be chained together to set up a service

flow. Here are a couple of examples of processes that implement such a service flow.

4. Ranking, filtering and pagination of search results

a. Query Definition

b. ACL

c. Data Providers Selection

d. Query Submission

i. Local Repository Lookup

ii. Query Reconciliation

e. Data Enrichment (optional)

f. Data Reconciliation

i. Mapping Rules

g. Data Accumulation and Caching

h. Data Sorting / Filtering / Paginating

i. Service References

i. Results Visualisation

5. Modification of imported data (e.g. cleansing, translation, etc.)

a. Data Subscription

b. ACL

c. Query Submission

i. Query Reconciliation

d. Data Enrichment (optional)

e. Data Reconciliation

i. Mapping Rules

f. Data Modification (e.g. cleansing, translation, etc.)

i. Service References

File: D_2_2_ArchitecturalDesign_final Page 70 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

g. Data Transfer

5.3.3 Workflow Definition

Many different languages have been defined to describe tasks and the flow of

activities that constitute a process. From a first analysis it came up that the best

candidate for describing HarmoSearch workflows is BPMN 2.0 (see 4.3.1).

As an example, the following figure shows a BPMN graphical notation of a simple

business process with a start event, a sub-process, a gateway, two user tasks and

an end event. The sub-process internal structure is depicted in the figure below.

Figure 5 BPMN Main process

Figure 6 BPMN Sub-process

The related BPMN 2.0 XML file is the following:

 <process id="mainprocess" name="mainprocess">

 <startEvent id="startevent3" name="Start"></startEvent>

 <exclusiveGateway id="exclusivegateway3" name="Exclusive

Gateway"></exclusiveGateway>

 <userTask id="usertask2" name="User Task"></userTask>

 <sequenceFlow id="flow24" name="" sourceRef="exclusivegateway3"

targetRef="usertask2"></sequenceFlow>

 <userTask id="usertask3" name="User Task" ></userTask>

 <sequenceFlow id="flow25" name="" sourceRef="exclusivegateway3"

targetRef="usertask3"></sequenceFlow>

 <endEvent id="endevent4" name="End"></endEvent>

 <sequenceFlow id="flow26" name="" sourceRef="usertask3"

targetRef="endevent4"></sequenceFlow>

 <sequenceFlow id="flow27" name="" sourceRef="usertask2"

targetRef="endevent4"></sequenceFlow>

 <subProcess id="subprocess1" name="Sub Process">

 <startEvent id="startevent4" name="Start"></startEvent>

 <userTask id="subprocess1_usertask4" name="User Task"></userTask>

File: D_2_2_ArchitecturalDesign_final Page 71 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 <sequenceFlow id="subprocess1_flow30" name=""

sourceRef="subprocess1_startevent4"

targetRef="subprocess1_usertask4"></sequenceFlow>

 <userTask id="subprocess1_usertask5" name="User Task"></userTask>

 <sequenceFlow id="subprocess1_flow31" name=""

sourceRef="subprocess1_usertask4"

targetRef="subprocess1_usertask5"></sequenceFlow>

 <endEvent id="endevent5" name="End"></endEvent>

 <sequenceFlow id="subprocess1_flow32" name=""

sourceRef="subprocess1_usertask5"

targetRef="subprocess1_endevent5"></sequenceFlow>

 </subProcess>

 <sequenceFlow id="flow28" name="" sourceRef="startevent3"

targetRef="subprocess1"></sequenceFlow>

 <sequenceFlow id="flow29" name="" sourceRef="subprocess1"

targetRef="exclusivegateway3"></sequenceFlow>

 </process>

HarmoSearch processes can easily be described using BPMN graphical notation, as

shown in the following figures that represent how the metasearch process may be

modelled.

Figure 7 Metasearch process

Figure 8 Query submission sub-process

5.3.4 Workflow Execution

Many different workflow engines and Business Process Management (BPM) platforms

have been developed to manage and execute modelled computer processes. From a

first analysis it came up that the best candidate for managing and executing

HarmoSearch workflows is Activiti (see 4.3.2).

A workflow consists in a sequence of tasks. Tasks may differ according to the type of

operation that they describe. Examples of tasks are:

 User task. It is used to model work that needs to be done by a human actor.

When the process execution arrives at such a user task, a new task is created

in the task list of the user(s) or group(s) assigned to that task.

File: D_2_2_ArchitecturalDesign_final Page 72 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 Script task. It is an automatic activity. When a process execution arrives at

the script task, the corresponding script is executed.

 Service task. A Java service task is used to invoke an external Java class.

HarmoSearch workflows will mainly make use of system tasks to fulfil the services

described in 5.3.2.

Using Activiti, to implement a class that can be called when the process execution
arrives at a service task, this class needs to implement the

org.activiti.engine.delegate.JavaDelegate interface and provide the required

logic in the execute method. When process execution arrives at this particular step,

it will execute this logic defined in that method and leave the activity in the default
BPMN 2.0 way. Here is an example of a simple helloWorld workflow composed by
start event, end event and one system task that prints ―Hello World‖.

The related BPMN file is the following:

 <process id="helloworld" name="helloworld">

 <startEvent id="startevent1" name="Start"></startEvent>

 <serviceTask id="servicetask1" name="Service Task"

activiti:class="it.cpr.JavaService"></serviceTask>

 <sequenceFlow id="flow1" name="" sourceRef="startevent1"

targetRef="servicetask1"></sequenceFlow>

 <endEvent id="endevent1" name="End"></endEvent>

 <sequenceFlow id="flow3" name="" sourceRef="servicetask2"

targetRef="endevent1"></sequenceFlow>

 </process>

The activity:class attribute of the serviceTask tag there contains the connection

between the workflow and the Java code invoked when the task is executed. Here is

the implementation of the JavaService delegate class:

package it.cpr;

import org.activiti.engine.delegate.DelegateExecution;

public class JavaService implements org.activiti.engine.delegate.JavaDelegate {

 @Override

 public void execute(DelegateExecution arg0) throws Exception {

 String ss = (String)arg0.getVariable("name");

 System.out.println(ss + " Hello World!");

 }

}

The execute method contains the reference to a shared environment where the

tasks in the workflow can read and write different variables. In the example above

the string variable name is read in the JavaService.execute method.

File: D_2_2_ArchitecturalDesign_final Page 73 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

The objects shared by process tasks and Java delegate classes cannot only be

primitive types but also user defined classes. In this case they have to implement

the java.io.Serializable interface.

As an alternative, it is also possible to inject values into the fields of the delegated

classes using BPMN 2.0 activity:field element. If available, the value is injected

through a public setter method on the delegated class, following the Java Bean

naming conventions. If no setter is available for that field, the value of private

member will be set on the delegate.

In order to execute the simple process described above, here is a junit test class:

public class ProcessTestHelloworld {

@Rule

public ActivitiRule activitiRule = new ActivitiRule();

 @Test

 @Deployment(resources="diagrams/helloWorld.activiti.bpmn20.xml")

 public void startProcess() {

 RuntimeService runtimeService = activitiRule.getRuntimeService();

 Map<String, Object> variableMap = new HashMap<String, Object>();

 variableMap.put("name", "Activiti");

 ProcessInstance processInstance =

runtimeService.startProcessInstanceByKey("helloworld", variableMap);

 assertNotNull(processInstance.getId());

 }

}

This test class contains:

 the reference to the BPMN file containing the process description and the

connection with the Java delegate class;

 the instantiation of the HashMap for sharing data between the workflow task

and the Java delegate class;

 the method for starting the process with id ―helloworld‖.

The output of this process is, as expected:

Activiti Hello World!

Using Activiti with Spring

A different and more efficient way to connect workflow service tasks with Java code

is to use the integration between Spring and Activiti. In this way there is no need for

delegate classes neither to extend the org.activiti.engine.delegate.JavaDelegate

interface nor to implement the execute method. Spring objects with their methods

can be directly referenced in the BPMN files using the activity:expression

element. Let’s have a look at how the helloWorld process described above will look

like using Spring. Here is the Java class that implements a helloworld method:

package it.cpr;

public class PojoClass {

 public void helloworld(String s){

 System.out.println(s + " Hello World!");

 }

}

File: D_2_2_ArchitecturalDesign_final Page 74 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

And this is the spring definition of a bean for that class:

<bean id="springRef" class="it.cpr.PojoClass" />

The BPMN description of the helloWorld process will look as follow:

 <process id="callSpringProcess" name="Call Spring example">

 <startEvent id="theStart" />

 <sequenceFlow id="flow1" sourceRef="theStart" targetRef="callSpring" />

 <serviceTask id="callSpring"

activiti:expression="${springRef.helloworld(name)}" />

 <sequenceFlow id="flow3" sourceRef="callSpring" targetRef="theEnd" />

 <endEvent id="theEnd" />

 </process>

The activity:expression property in the serviceTask tag allows to use an

expression that resolves to a delegation object; in this case it allows to invoke the

helloworld method defined in the springRef bean.

Here is the code for the class that starts the process:

public class CallSpringExample {

 public static void main(String[] args) {

 // setup

 ApplicationContext context = new

ClassPathXmlApplicationContext("spring-context.xml");

 ProcessEngine processEngine =

context.getBean(ProcessEngine.class);

 RepositoryService repositoryService =

processEngine.getRepositoryService();

 RuntimeService runtimeService = processEngine.getRuntimeService();

 // Deploy process

 repositoryService.createDeployment()

 .addClasspathResource("callSpringProcess.bpmn20.xml")

 .deploy();

 // Run process

 Map<String, Object> variables = new HashMap<String, Object>();

 variables.put("name", "Activiti");

 runtimeService.startProcessInstanceByKey("callSpringProcess",

variables);

 }

}

This class configures the environment in the same way as in the previous example,

but in the spring class there is no reference to that environment, but just input and

output variables.

As expected, the result of the execution of this process is again:

Activiti Hello World!

The return value of a service execution (for service task using expression only) can

be assigned to an already existing or to a new process variable by specifying the

process variable name as a literal value for the activiti:resultVariable attribute

of a service task definition. Any existing value for a specific process variable will be

overwritten by the result value of the service execution. When not specifying a result

variable name, the service execution result value gets ignored.

File: D_2_2_ArchitecturalDesign_final Page 75 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

In general the output of a method can be used also by conditional elements to

choose the flow to execute.

Exception handling

When custom logic is executed, it is often required to catch certain exceptions. One

common use case is to route process execution through another path in case some

exception occurs. The following example shows how this is done.

 <serviceTask id="javaService" name="Java service invocation"

activiti:class="org.activiti.ThrowsExceptionBehavior">

 </serviceTask>

 <sequenceFlow id="no-exception" sourceRef="javaService" targetRef="theEnd" />

 <sequenceFlow id="exception" sourceRef="javaService" targetRef="fixException"

/>

Here, the service task has two outgoing sequence flow, called exception and no-

exception. This sequence flow id will be used to direct process flow in case of an

exception:

public class ThrowsExceptionBehavior implements ActivityBehavior {

public void execute(ActivityExecution execution) throws Exception {

String var = (String) execution.getVariable("var");

PvmTransition transition = null;

try {

executeLogic(var);

transition =

execution.getActivity().findOutgoingTransition("no-exception");

} catch (Exception e) {

transition =

execution.getActivity().findOutgoingTransition("exception");

}

execution.take(transition);

}

}

5.4 MAPPING TOOL

The goal of work package 6 of the HarmoSearch project is to develop a tool that

visually supports the user in the task of creating the necessary mapping artefacts

with little technical knowledge. The artefacts are then used to perform a translation

from the data model of one organization to the data model of Harmonise and vice-

verse.

The mapping tool is considered to be a standalone application and should not be

dependent on any particular domain. Basically, it consists of a graphical User

Interface to show and manipulate mappings, a mechanism to import and display

schemata, a pluggable set of algorithms to support automatic mappings, a generator

to create mapping artefacts and to export these artefacts, and an infrastructure in

order to manage a mapping project.

In a first step we have evaluated a number of existing solutions that claim to support

creation and maintenance of mapping projects (see WP6, task 6.1 Scanning of

existing open source projects). As evaluation criteria we used functional and non-

functional features of existing projects. The functional features refer to the basic

components of the envisioned mapping tool, which are a Graphical User Interface,

File: D_2_2_ArchitecturalDesign_final Page 76 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

an import and export component to read a variety of schema formats and export

transformation rules to the Harmonise platform, a matching component that gives

access to a variety of matching algorithms, and a transformation creation

component. The non-functional features comprise the terms and conditions of usage

and the support to users by community and documentation.

 Open source: Is the source available? This is in effect a knock-out criterion

since we consider only Open Source projects for HarmoSearch.

 Graphical Interface: Does the tool provide a GUI to show and manipulate

mappings?

 Programming Language: which programming language is employed?

 Transformation Technologies: which transformation technology is employed

to transform data from one format to the other?

 Matching Algorithms: Are there any algorithms to propose matches between

data formats?

 Input-Formats: which input formats are supported?

 Output-Formats: which output formats are supported?

 Extensibility: which techniques exist to provide extensions to the tool?

 Technological Requirements: what are the dependencies to particular

technologies and platforms (Win/MAC/Unix)?

 Community: Is there some kind of community that discusses the tool?

 Documentation: scope, actuality and extensiveness of documentation

 License: what type of license model is used? Is it suitable for the

HarmoSearch project?

The evaluation showed that none of the Open source tools is actually mature or

comprehensive enough to fulfil all of our requirements. Nevertheless, some

candidates have parts that can provide valuable input to the HarmoSearch mapping

tool. For instance, the Alignment API (http://alignapi.gforge.inria.fr/align.html)

provides an open environment for schema matching with easy means to integrate

and test new matching algorithms. The Smooks project (http://www.smooks.org/),

on the other hand, has no support for automatic matching but provides extensive

means to generate and execute transformations from source to target data. None of

the evaluated tools have a really suitable GUI.

As a result from this investigation, we see as the most promising approach a mix of

self-developed SW components tied together with (parts) of existing software

components. As a glue to combine these components we use Eclipse, a well

established environment for SW development in various areas.

The architecture of the Mapping tool is depicted in Figure 9 and comprises the

following components:

File: D_2_2_ArchitecturalDesign_final Page 77 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Figure 9: Basic architecture of Mapping Tool

5.4.1 Eclipse

This is actually not a component but a whole environment with a set of built-in core

components and a set of optional components. Using Eclipse has a number of

advantages: First of all, it is well-known and established as a software development

tool and is used in many projects worldwide. Then, Eclipse is highly configurable

using a plug-in mechanism; additional components can be integrated easily, and

many components are available from a huge community. Finally, it is available for all

major platforms and has only the single dependency that Java must have been

installed on the local machine.

5.4.2 GUI

The GUI consists of editors and views to navigate and manipulate artefacts and

additional elements such as tool bars or menus. It serves to visualise the source and

target schemata, the proposed matches between source and target data elements,

and the created mappings between source and target. Furthermore, it provides

functionality to select matching algorithms and to manipulate and edit mappings. In

addition, The GUI provides means to manage mapping projects. These include the

creation of new projects, creation of new mappings within a project, and registration

of data schemata from various locations.

5.4.3 Schema Import Component

Imports a schema file from local storage device or from an URL over the Web and

transforms the schema into a suitable internal representation. While the Harmonise

schema is available in XSD and RDF format, we do not want to restrict our approach

to just these two kinds of schemata, but also take into account additional formats

such as data descriptions of relational databases. Basically, a schema importer is a

component that takes as input the location of a schema and returns a suitable

representation of the schema. Currently, we use an XML Document format as

representation means, but other representation formats may evolve during the

development of the mapping tool.

File: D_2_2_ArchitecturalDesign_final Page 78 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

5.4.4 Matching Component

This component provides means to automatically derive equivalences between

source and target schema elements. Basically, the component provides an Interface

called Matching Service that has a method getMatching (source schema, target

schema) which returns a distance matrix for the source and target elements.

In addition, a configuration method addContext (Context context) allows setting a

single matching algorithm or a sequence of consecutive algorithms. Algorithms are

added using the Strategy pattern, that is, algorithms are not pre-configured but can

be added and removed at runtime.

5.4.5 Mapping Component

Holds an actual mapping from a source to a target schema, that is, some

representation that expresses equivalences of source schema elements to target

schema elements and is the result of a mapping task. It takes as input matching

proposals from the matching component as well as user generated input from the

GUI.

5.4.6 Transformation Component

It is responsible for the creation of the actual transformation from source to target.

In the Harmonise project XSLT (Extensible Stylesheet Language Transformations) is

used as a transformation means, but other transformation mechanisms should not

be excluded. The component offers an interface that provides the main functionality

of transformation. It takes as input the source and target schema and the actual

mapping from the mapping component and has as output a representation of the

transformation according to the actual configuration such as an XSLT file.

5.4.7 Export Component

The result from the Transformation process is uploaded to and registered at the

Harmonise platform using this component.

All components are being realized as Eclipse plug-ins. In a first step, simple mock-

ups are being developed that allow studying the overall behaviour of the system and

to detect any shortcomings and design flaws of our approach. Additionally, optional

components are scanned that may be of interest for the mapping tool. In particular,

Eclipse has a number of plug-ins that can give aid in the management of mapping

projects, such as collaboration tools, task management or bug tracking.

File: D_2_2_ArchitecturalDesign_final Page 79 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

6 DEVELOPMENT VIEW

This chapter defines the development environment, how the software components

should be structured and some common issues related to error and log management

and testing.

6.1 SVN

Apache Subversion (often abbreviated SVN) is a software versioning and a revision

control system founded and sponsored in 2000 by CollabNet Inc. Subversion uses

the Apache License, making it free software and open source.

HarmoSearch developers will use Subversion to maintain current and historical

versions of files such as source code, web pages, and documentation.

A necessary step before starting development is to check out the project source tree

from the SVN repository: https://62.149.192.167/repos/harmosearch. Access to the

repository requires username/password authentication.

The project and the component directory hierarchy are still to be agreed. Here is a

possible package structure.

 codes/java/

o framework (Spring)

o component1 (component1 subtree)

o component2 (component2 subtree)

o component3 (component3 subtree)

o …

o componentN (componentN subtree)

o application (Liferay web application)

o lib (components generated jar files)

o extlib (needed external libs)

o instLiferay (installation and configuration instructions)

o build.xml (main build script)

The idea is that each component has its own separate build which produces a jar file.

The application build is in charge of integrating all the components’ jars and creating

the war package to be deployed on the Tomcat application server.

Here is a possible directory structure for a component or application subtree.

 componentN

o main

 src (source code)

 resources (needed resources)

o build (place for building the component)

https://62.149.192.167/repos/harmosearch

File: D_2_2_ArchitecturalDesign_final Page 80 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

 classes (generated classes)

o web (web interfaces)

o test (test cases)

 src (source code)

 resources (needed resources)

o build.xml (component build script)

6.2 BUILD

Apache Ant is a software tool for automating software build processes. It is

implemented using the Java language, requires the Java platform, and it uses XML

to describe the build process and its dependencies. By default the XML file is named

build.xml. Ant is an Apache project. It is open source software, and is released under

the Apache Software License.

The following Ant targets may be used by HarmoSearch developers from the

application or component build file during development process:

 clean the component build results

 compile the component

 build_jar, generates the component .jar file

 test, runs the component test cases

 doc, generates javadoc

 build_war, generates and deploys the application .war file

The following Ant targets may be used from the main build file:

 all, builds all components, generates and deploys the .war file

 clean, cleans all temporally build files

6.3 TESTING

Software testing can be costly and burdensome, but not testing software is even

more expensive and often causes frustration in a later stage of software

development. For that reason testing is part of every software engineering process.

Since mistakes are inevitable and most of them are made in early stages of

development, testing the software must begin right from the beginning. Therefore,

HarmoSearch approach will be based on JUnit [http://www.junit.org] in order to test

each component.

JUnit is an easy-to-use Java testing framework that serves two main purposes:

 Avoid errors in a component's application logic.

 Avoid regression errors - while fixing an error you could introduce new error

into the system.

The JUnit philosophy is quite a simple one: "code a little, test a little" - which means

that test cases should be written at the same time of the main code. With JUnit

File: D_2_2_ArchitecturalDesign_final Page 81 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

checks are encapsulated in a TestCase and assertions should be made to let JUnit

check if the expected results correspond to the result a certain piece of code (e.g. a

method, class) delivers. The advantages of the JUnit approach is that checks don’t

have to be placed into the program code and all of them are reproducible.

JUnit itself is just a jar file (junit.jar) that provides the framework to write test cases

and to group them into (nested) test suits. Furthermore, it contains a graphical as

well as a textual environment to run the test cases.

For HarmoSearch, the JUnit rule of thumbs are:

 Write one test case for each java class of a component by creating a new test

class that extends the JUnit TestCase class.

 Test all methods that perform a given functionality by writing one or more

corresponding test methods. A test method contains several assertions that

reflect what it is expected to be the result of a certain test scenario.

 Group test classes by defining classes that extend JUnit's TestSuite class.

Integration tests can be written using the same JUnit approach by writing test cases

that reflect the functionality of the use cases defined for each component or set of

components.

Generally spoken, test cases should be written in a way so that all tests for one

component can run independent from other components within the system

architecture. However, due to the distributed architecture of Harmonise, it might

happen that one component relies on objects and service interfaces defined in other

components. Since in an early stage of development only the predefined interfaces

are available, but not the according implementations, it is possible to write Mock

Objects that simulate the expected behaviour of other components, providing some

dummy values that represent the values expected to get from those interfaces. This

is the case not only for component interfaces but also for database connectivity.

6.4 LOGGING

Logging information during run-time is very important for tracking down what is

going on. Proper logging helps a lot in finding and discovering bugs and potential

weird behaviours.

HarmoSearch project will use Apache Log4J [http://jakarta.apache.org/log4j/] and

Apache Common Logging [http://jakarta.apache.org/commons/logging/] for getting

Logger instances.

Logger supports logging of 5 different types of messages (debug levels):

 DEBUG, used for showing detailed information about what is going on in the

system

 INFO, just some common info messages

 WARN, warnings that the software can handle properly

 ERROR, errors that the software can handle properly

 FATAL, fatal errors after which the software cannot continue

File: D_2_2_ArchitecturalDesign_final Page 82 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

6.5 EXCEPTION HANDLING

Exception handling is a programming language construct or computer hardware

mechanism designed to handle the occurrence of exceptions, special conditions that

change the normal flow of program execution.

A piece of code is said to be exception-safe, if run-time failures within the code will

not produce ill effects, such as memory leaks, garbled stored data, or invalid output.

Checked exceptions in Java are a special set of exceptions. They represent invalid

conditions in areas outside the immediate control of the program (invalid user input,

database problems, network outages and absent files). The checked exceptions that

a method may raise are part of the method's signature. On the other hand,

unchecked exceptions (Runtime Exceptions and Errors) represent defects in the

program (bugs) - often invalid arguments passed to a non-private method – and

they remain unhandled.

Checked exceptions can, at compile time, reduce the incidence of unhandled

exceptions surfacing at runtime in a given application. However, they can either

require extensive throws declarations, revealing implementation details and reducing

encapsulation, or encourage coding poorly-considered try/catch blocks that can hide

legitimate exceptions from their appropriate handlers. It is possible to reduce the

number of declared exceptions by either declaring a superclass of all potentially

thrown exceptions or by defining and declaring exception types that are suitable for

the level of abstraction of the called method, and mapping lower level exceptions to

these types, preferably wrapped using the exception chaining in order to preserve

the root cause.

In HarmoSearch the super class of all potentially thrown exceptions is called

HarmoniseException, while the super class of all unchecked exceptions is called

HarmoniseUncheckedException.

File: D_2_2_ArchitecturalDesign_final Page 83 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

7 PHYSICAL VIEW

This chapter discusses possible approaches to deploy on the network the

HarmoSearch solution.

The figures below show how the developed components can be deployed on the

HarmoSearch servers and the relationships with external systems.

The first option is the simplest one. All the Harmonise components are deployed in

one central server, which acts as web server, application server and database

server.

Figure 10 Physical View: simple approach

This server may connect to other external servers (mainly through web services)

when there is the need to push data to / query data from a Harmonise participant or

when the execution of an external service has to be triggered (e.g. recommendation

or data modification services).

The second option is based on a load balancing cluster approach. In networking, load

balancing is a technique to distribute workload evenly across two or more

computers, network links, CPUs, hard drives, or other resources, in order to get

optimal resource utilization, maximize throughput, minimize response time, and

avoid overload. Using multiple components with load balancing, instead of a single

component, may increase the reliability and the scalability of the system, i.e. its

ability to handle growing amounts of work in a graceful manner or to be enlarged to

accommodate that growth. To be able to optimize access considering geographical

distribution of the clients it will be possible to adopt the new cloud computing (for

example Amazon S3) approach, where specific services are made available to the

client from a network server optimized considering the location of the client.

The adopted infrastructural technology, in particular the Liferay Portal Server, is well

suited to scale to complex high availability and fault tolerant scenario as such needs

arise. The actual architecture will be chosen according to the business needs of the

solution.

File: D_2_2_ArchitecturalDesign_final Page 84 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

Figure 11 Cluster

File: D_2_2_ArchitecturalDesign_final Page 85 of 85

FP7-SME-1 262289

HARMOSEARCH

Deliverable D2.2

8 LIST OF FIGURES

Figure 1 Logical View .. 8

Figure 2 Infrastructural View .. 31

Figure 3 Portlet Component View .. 52

Figure 4 Services Component View ... 57

Figure 5 BPMN Main process .. 70

Figure 6 BPMN Sub-process ... 70

Figure 7 Metasearch process .. 71

Figure 8 Query submission sub-process ... 71

Figure 9: Basic architecture of Mapping Tool .. 77

Figure 10 Physical View: simple approach .. 83

Figure 11 Cluster ... 84

